• Title/Summary/Keyword: Sliding plane

Search Result 144, Processing Time 0.025 seconds

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF

High Speed Position Control Method of a Linear DC Motor (리니어 직류 모터의 고속 위치 제어방식)

  • 엄기환;선동설;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.4
    • /
    • pp.51-58
    • /
    • 1993
  • This paper proposed a minmum time control method by a parabolic switching function to high speed position control, with high accuracy, of a Linear OC Motor A proposed method is organized simply and a bang-bang control's signal switched on a parabola type switching function in the phase for a minimum time control realization. However, a sliding mode occurs owing to system's modelling errors, so the minimum time control is realized a once switching bang-bang control by repeating trial experiments. Next time, in a neighborhood of the origin in the phase plane, a Linear OC Motor is stopped at the origin by the linear feedback control.

  • PDF

Correlation of Tectolineaments and Discontinuities in connection with Slope Failure (사면 붕괴와 관련 구조선 분석과 불연속면의 상관성 연구)

  • Baek, Yong;Koo, Ho-Bon;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.303-313
    • /
    • 2001
  • A cut-slope near Guam-Ri Hwado-Eup Namyangju-Si Kyunggi-Do collapsed during a heavy rainfall over 400mm at 28th of August 2000. The cut-slope collapse reportedly developed mainly by block sliding along a set of discontinuities, although slope angle of the cut-slope was 40$^{\circ}$(1:1.2) that agrees with the road construction criteria. This study aims to analyze differences and correlations among several data-collecting methods limited to discontinuity analysis related with cut-slope collapse. This study started with analysing discontinuity surface characteristics, geology of the country rock and orientations of the discontinuities directly related with the collapse. Analysis of aerial photos around the study area provided regional lineament data, and discontinuity plane description and measurements were collected from core logging and Borehole Image Processing System (BIPS). Spearmans correlation ranking coefficient method was used to get correlation of discontinuity planes according to analysis methods. The result suggests that the correlation coefficient is ${\gamma}_s$ = 0.91 Plus, stability analysis of discontinuity plane orientation data using equal-area stereonet revealed that the study area is unstable to planar failure. This study suggests that the cut-slope angles currently applied should be shallower and that significant attention is required to orientation distribution of discontinuities existed in cut-slopes studies.

  • PDF

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.

Borehole Image Processing System(BIPS)를 이용한 사면 안정성 해석

  • Yu, Byeong-Ok;Kim, Byeong-Seop
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.111-129
    • /
    • 2002
  • Generally, investigation methods of cut slope are conucted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Analysis of Deformation and Stability of Slope at the Wiri Region of Local Road 999 Nearby Andong, Gyeongsangbukdo in Korea. (999번 지방도로 경상북도 안동시 위리 지역의 사면 변형 및 안정성 분석)

  • 장현식;장보안
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • Heaving of road and subsidence of slope took place at the Wiri region of the local highway 999 in Gyeongsangbukdo, Korea after heavy rain in the next year of construction. Although the state government had performed remedial treatments by reducing the angle and the height of the slope, deformation had never stopped. Therefore, we have preformed the analysis of deformation and stabilityof the slope. Study area consists of the Cretaceous shale, siltstone and sandstone and two faults are found. The major deformation occurred by sliding of rock mass along faults after heavy rain because not only thepore pressure at the fault plane and the unit weight of sliding mass increased, but did the shearstrength of saturated fault clay become very low. The decrease in shear strength of saturated fault clayis the major factor among the reasons for deformation. Numerical simulations using limit equilibriummodel, finite difference model and finite element model were performed for eight cross sections.Although safety factors are above 1.7 during the dry season, they become below 1.0 when groundwaterlevel raises to surface. The maximum displacement is about 15-3Ocm. However, safety factors increasedto above 2.4 and the maximum displacement is below 2.08cm after remedial treatment, Indicating thatthe slope becomes stable.

  • PDF

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Effect of rock joint roughness on shear strength (조도(粗度)가 전단강도에 미치는 영향)

  • 김영기;천성환
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 1992
  • Rock mass having discontinuous plane almost appear roughness which have a great effect on shear strength. Rocks of studied object choose granites (15 samples), gneisses (7 samples), and andesites (1 sample). The purpose of this study was to clarify shear strength of discontinuous planes as value of shear strength angle (${\Phi}_p$), critical stress of roughness (${\sigma}_r$) and shear failure strength (${\tau}_o$). 1. Roughness decrease from ${\Phi}_i=38.03^{\circ}$ to $33.21^{\circ}$ that is, friction angle has the highest value at first stage and has the lowest value at the last stage. 2. Critical angle of roughness distribution within $45^{\circ}$ (test max. $angle=43^{\circ}$), JRC(Joint Roughness Coefficient) is less than 14 and lies distribution range of boundary is following: $JRC=-4.63Ln{\sigma}n+5.63$. 3. When the roughness critical stress(${\sigma}_T) is from 0.1 to 3 .56Mpa, shear failure strength of roughness (${\tau}_o$) is from 0.01 to 0.46Mpa, shear strength(${\tau}$) of discontinuous plane is from 3.65 to 39.11 Mpa. If loading is higher than these values, collapse and sliding will occur on the rock mass.

  • PDF

Application of Drone Photogrammetry for Current State Analysis of Damage in Forest Damage Areas (드론 사진측량을 이용한 산림훼손지역의 훼손 현황 분석)

  • Lee, Young Seung;Lee, Dong Gook;Yu, Young Geol;Lee, Hyun Jik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.49-58
    • /
    • 2016
  • Applications of drone in various fields have been increasing in recent years. Drone has great potential for forest management. Therefore this paper is using drone for forest damage areas. Forest damage areas is divided into caused by anthropogenic and occurs naturally, the possibility of disasters, such as slope sliding, slope failures and landslides, sediment runoff exists. Therefore, this research was to utilize the drone photogrammetry to perform the damage analysis of forest damage areas. Geometrical treatment processing results in Drone Photogrammetry, the plane position error RMSE was ${\pm}0.034m$, the elevation error RMSE was ${\pm}0.017m$. The plane position error of orthophoto RMSE was ${\pm}0.083m$, the elevation error of digital elevation model RMSE was ${\pm}0.085m$. In addition, It was possible to current state analysis of damage in forest damage areas of airborne LiDAR data of before forest damage and drone photogrammetry data of after forest damage. and application of drone photogrammetry for production base data for restoration and design in forest damage areas.

Geological Discussion of Monolithic Rock Slide on the Slope of Mt. Seunghag, Dangridong, Busan (부산직할시 승학산 단일암괴 사태사고의 환경지질학적 고찰)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.17 no.3
    • /
    • pp.6-21
    • /
    • 1984
  • A rock slide in amount of 100 tons in weight happened at 7: 10 a.m., 4th October 1982, on the southwestern ridge of Mt. Seunghag, Busan City. The original rock mass of the rock slide is located 850m west from the Dangri Crushed Stone Quarry. The geology of the area consists of agglomerate, andesite, andesitic tuff, and shale hornfels of the Cretaceous Yucheon Group. The rock blocks were first shifted along the steep joint plane on an andesite outcrop at the site and then to the eastern foot of the mountain slope where some private houses are placed. The mountain slope is covered with thick superficial soil. A slided monolithic-block with 83 tons in weight from the rock slide met with an accident of striking against a house with a tremendous force, to which much damage was done as much as its half was destroyed. The rock-slided block pierced the board-floored room only posited at the center and by the bedroom of the house making a pass like a bullet hole, and hence cut a big pine tree with 24 centimeters in diameter at a distance of 26 meters down the house. However nobody was killed or injured in the stricken house, though seven family members were stayed therein at the very time of accident. They really met a rare opportunity in an unhappy disaster. Measurements of the rock slide were made in the course of the field survey. The monolithic mass was transported by way of saltation, rolling, and sliding to a distance of 300 meters down along the slope dipping 30$^{\circ}$ east. It took about 16 seconds front tile outcrop to the terminal. The acceleration value of the monolithic rock slide is 2.35m/sec$^2$.

  • PDF