• 제목/요약/키워드: Sliding observer

검색결과 351건 처리시간 0.026초

비선형 시스템에 대한 동적인 규칙 삽입을 이용한 퍼지 관측기 설계 (Design of Fuzzy Observer for Nonlinear System using Dynamic Rule Insertion)

  • 서호준;박장현;서삼준;김동식;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2308-2310
    • /
    • 2001
  • In the adaptive fuzzy sliding mode control, from a set of a fuzzy IF-THEN rules adaptive fuzzy sliding mode control whose parameters are adjusted on-line according to some adaptation laws is constructed for the purpose of controlling the plant to track a desired trajectory. Most of the research works in nonlinear controller design using fuzzy systems consider the affine system with fixed grid-rule structure based on system state availability. The fixed grid-rule structure makes the order of the controller big unnecessarily, hence the on-line fuzzy rule structure and fuzzy observer based adaptive fuzzy sliding mode controller is proposed to solve system state availability problems. Therefore, adaptive laws of fuzzy parameters for state observer and fuzzy rule structure are established implying whole system stability in the sense of Lyapunov.

  • PDF

새로운 적응 슬라이딩 모드 관측기에 기초한 불확실성을 갖는 유도전동기 제어 (A New Adaptive Sliding Mode Observer-Based Control of Induction Motors with Uncertainties)

  • 황영호;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1276-1278
    • /
    • 2005
  • In this paper, we propose an adaptive sliding mode observer-based control of induction motors with uncertainties. The proposed adaptive sliding mode flux observer generates estimates both for the unknown parameters(load torque and rotor resistance) and for the unmeasured state variable (rotor fluxes); they converge to the corresponding true value under persistency of excitation which actually holds in typical operating conditions. The proposed controller guarantees speed tracking and bounded signals for every initial condition of the motor. Simulations show that all estimation errors tend quickly to zero so that high tracking performances are achieved both for speed and rotor flux.

  • PDF

슬라이딩 모드 관측기와 적응 필터를 이용한 SPMSM 기계 파라미터 추정 (SPMSM Mechanical Parameter Estimation Using Sliding-Mode Observer and Adaptive Filter)

  • 김형우;최준영
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.33-39
    • /
    • 2019
  • We propose a mechanical parameter estimation algorithm for surface-mounted permanent magnet synchronous motors (SPMSMs) using a sliding-mode observer (SMO) and an adaptive filter. The SMO estimates system disturbances in real time, which contain the information on mechanical parameters. A desirable feature that distinguishes the proposed estimation algorithm from other existing mechanical parameter estimators is that the adaptive filter estimates electromagnetic torque to improve the estimation performance. Moreover, the SMO acts as a low-pass filter to suppress the chattering effect, which enables the smooth output signals of the SMO. We verify the mechanical parameter estimation performance for SPMSM by conducting extensive experiments for the proposed algorithm.

Robust Control of Induction motor using Fuzzy Sliding Adaptive Controller with Sliding Mode Torque Observer

  • 윤병도;류홍우;임익헌;김찬기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.420-425
    • /
    • 1996
  • In this paper a robust speed controller for an induction motor is proposed. The speed controller consists or a fuzzy sliding adaptive controller(FSAC) and a sliding mode torque observer(SMTO). FSAC removes the problem or oscillations caused by discontinuous inputs of the sliding mode controller. The controller also provides robust characteristics against parameter and sampling time variations. Although, however, the performance of FSAC is better than PI controller and fuzzy controller in robustness, it generates the problem of slow response time. To alleviate this problem, a compensator, which performs feedforward control using torque signals produced by SMTO, is added. The simulation and hardware implementation results show that the proposed system is robust to the load disturbance, parameter variations, and measurement noises.

  • PDF

Finite-Time Convergent Guidance Law Based on Second-Order Sliding Mode Control Theory

  • Ji, Yi;Lin, Defu;Wang, Wei;Lin, Shiyao
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.697-708
    • /
    • 2017
  • The complex battlefield environment makes it difficult to intercept maneuvering targets for guided missiles. In this paper, a finite-time convergent (FTC) guidance law based on the second-order sliding mode (SOSM) control theory is proposed to achieve the requirements of stability, accuracy and robustness. More specifically, a second-order sliding mode observer (SMOB) is used to estimate and compensate for the total disturbance of the controlled system, while the target acceleration is extracted from the line-of-sight (LOS) angle measurement. The proposed guidance law can drive the LOS angular rate converge to zero in a finite time, which means that the missile will accurately intercept the target. Numerical simulations with some comparisons are performed to demonstrate the superiority of the proposed guidance law.

Modified adaptive complementary sliding mode control for the longitudinal motion stabilization of the fully-submerged hydrofoil craft

  • Liu, Sheng;Niu, Hongmin;Zhang, Lanyong;Xu, Changkui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.584-596
    • /
    • 2019
  • This paper presents a Modified Adaptive Complementary Sliding Mode Control (MACSMC) system for the longitudinal motion control of the Fully-Submerged Hydrofoil Craft (FSHC) in the presence of time varying disturbance and uncertain perturbations. The nonlinear disturbance observer is designed with less conservatism that only boundedness of the derivative of the disturbance is required. Then, a complementary sliding mode control system combined with adaptive law is designed to reduce the bound of stabilization error with fast convergence. In particularly, the modified complementary sliding mode surface which contains the estimation of the disturbance can reduce the switching gain and retain the normal performance of the system. Moreover, a hyperbolic tangent function contained in the control law is utilized to attenuate the chattering of the actuator. The global asymptotic stability of the closed-loop system is demonstrated utilizing the Lyapunov stability theory. Ultimately, the simulation results show the effectiveness of the proposed approach.

Reconfigurable Flight Control System Design Using Sliding Mode Based Model Following Control Scheme

  • Cho, Dong-Hyun;Kim, Ki-Seok;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, a reconfigurable flight control system is designed by applying the sliding mode control scheme. The sliding mode control method is a nonlinear control method which has been widely used because of its merits such as robustness and flexibility. In the sliding mode controller design, the signum function is usually included, but it causes the undesirable chattering problem. The chattering phenomenon can be avoided by using the saturation function instead of signum function. However, the boundary layer of the sliding surface should be carefully treated because of the use of the saturation function. In contrast to the conventional approaches, the thickness of the boundary layer of our approach does not need to be small. The reachability to the boundary layer is guaranteed by the sliding mode controller. The fault detection and isolation process is operated based on a sliding mode observer. To evaluate the reconfiguration performance, a numerical simulation using six degree-of-freedom aircraft dynamics is performed.

Disturbance observer based anti-disturbance fault tolerant control for flexible satellites

  • Yadegari, Hamed;Khouane, Boulanouar;Yukai, Zhu;Chao, Han
    • Advances in aircraft and spacecraft science
    • /
    • 제5권4호
    • /
    • pp.459-475
    • /
    • 2018
  • In the field of aerospace engineering, accurate control of a spacecraft's orientation is often very important to mission success. Therefore, attitude control is a technically plentiful and extensively studied subject in controls literature during recent decades. This investigation of spacecraft attitude control is assumed to address two important aspects of the problem solutions. One sliding mode anti-disturbance control for utilization of faulty actuator components and another one disturbance observer based control to improve the pointing accuracy in the absence of anti-vibration equipment for the elastic appendages like a solar panel. Simultaneous occurrence of vibration due to flexible appendages and reaction degradation due to failure in attitude actuators complicates this case. The advantage of this method is acquisition proper control by the combination of disturbance observer and sliding mode compensation that form a fault tolerant control for the concerned satellite attitude control system. Furthermore, the proposed composite method indicates that occurrence the failure in actuators and even elastic solar panel vibration effect may be handled directly without reconfiguring the control components or providing piezoelectric devices. It's noteworthy, attitude quaternion and angular velocity commands are robustly tracked via controllers to become inclined to zero.

강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어 (Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator)

  • 한성익
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

Guidance Law for Near Space Interceptor based on Block Backstepping Sliding Mode and Extended State Observer

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.163-172
    • /
    • 2014
  • This paper proposes a novel guidance law based on the block backstepping sliding mode control and extended state observer (ESO), which also takes into account the autopilot dynamic characteristics of the near space interceptor (NSI), and the impact angle constraint of attacking the maneuvering target. Based on the backstepping control approach, the target maneuvers and the parameter uncertainties of the autopilot are regarded as disturbances of the outer loop and inner loop, respectively. Then, the ESO is constructed to estimate the target acceleration and the inner loop disturbance, and the block backstepping sliding model guidance law is employed, based on the estimated disturbance value. Furthermore, in order to avoid the "explosion of complexity" problem, first-order low-pass filters are also introduced, to obtain differentiations of the virtual control variables. The stability of the closed-loop guidance system is also proven, based on the Lyapunov theory. Finally, simulation results demonstrate that the proposed guidance law can not only overcome the influence of the autopilot dynamic delay and target maneuvers, but also obtain a small miss distance.