• Title/Summary/Keyword: Sliding mode method

Search Result 590, Processing Time 0.032 seconds

Design of Hybrid Controller Using sliding Mode Controller and Fuzzy Controller (슬라이딩 모드 제어기와 퍼지 제어기를 이용한 하이브리드 제어기 설계)

  • Hwang, Kwang-Yong;Kwon, Cheol;Shin, Hyun-Seok;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.111-116
    • /
    • 1998
  • This paper proposes a robust control using a sliding mode controller and a fuzzy controller. Having the excellent transient response, the sliding mode controller has the poor steady state response, but the fuzzy controller has a good steady state reponse. A proposed controller combined these controllers has the quick response at the initial condition without the errors. The proposed robust nonlinear controller takes the advantage of the fuzzy controller and is the rapid and the stable response in conditions that the sliding mode controller keeps the errors at the steady state. The performance of proposed method is proved by simulation of the inverted pendulum.

  • PDF

Variable Speed Drives of Induction Motor for Traction Application with Modified Sliding Mode Control

  • Ryoo, Hong-Je;Kim, Jong-Soo;Rim, Geun-Hie;Dragos Ovidiu Kisck;Won, Chung-Yuen
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In this paper it is proposed an advanced modified sliding mode control of a rotor field oriented control of induction motor. The application of this unconventional control has very good results, such as disturbance rejection and nice dynamic properties. Stability can be guaranteed even in the worst situation. A conventional "sliding mode" controller is characterised by fast switching control signal, which causes the chattering of the drive system. To overcome this problem, a modified law is used, by introducing a hysteresis band and a continuous control, which modifies the conventional law. The control is accomplished with dual TMS320C44 floating-point digital signal processor. The validity of the proposed method was verified by experiment on the propulsion system simulator, used for the development of Korean High-Speed Railway Train(KHSRT).in(KHSRT).

  • PDF

Sliding Mode Control based on Disturbance Observer for Magnetic Levitation Positioning Stage

  • Zhang, Shansi;Ma, Shuyuan;Wang, Weiming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2116-2124
    • /
    • 2018
  • Magnetic levitation system with the advantages of non-contact, no friction and no wear can satisfy the requirement of high precision and high speed positioning. In this paper, magnetic levitation positioning stage which mainly consists of planar coil and HALBACH permanent magnet array and its control and driving system are designed. Magnetic levitation system is a highly nonlinear and strongly coupled complex system and its control performance can be influenced by the uncertainty and external disturbance. So exact feedback linearization method is used to realize exact linearization and decoupling, and a strategy of sliding mode control based on disturbance observer is proposed to compensate the uncertainty and external disturbance. Detailed proofs of observer's convergence property and system stability are derived. Both the simulation and experiment results verify the effectiveness of sliding mode control algorithm based on disturbance observer.

A Sliding Mode Observer Design for Fuel Cell Electric Vehicles

  • Park In-Duck;Kim Si-Kyung
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.172-177
    • /
    • 2006
  • This paper presents the sliding mode observer of an induction motor for the fuel cell electric vehicles. The exact rotor flux estimation of the induction motor is important for achieving the best performance from the fuel cell electric vehicle system. However, the flux estimator of the induction motor control is highly sensitive to the voltage sensor output characteristics and system parameter variation influenced by external factors. In order to eliminate these problems, this paper investigates the electric vehicle performance due to parameter variation of the induction motor. A new method to estimate the fuel cell electric vehicle system is proposed based on the sliding mode observer.

Adaptive Cruise Control of EV using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 EV의 차량 간격 자동 제어)

  • Lim, Hui-Seong;Shin, Soo-Cheol;Park, Sang-Hoon;Lee, Taeck-Kie;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.312-313
    • /
    • 2010
  • In this paper, the ACC(Adaptive Cruise Control) method of Electric Vehicle using sliding mode controller is proposed. The IPMSM is safely controlled as safe distance using distance sensor at front of vehicle. The speed of EV is controlled to ensure safe distance using sliding mode controller. The sliding mode controller is suitable to apply nonlinear system like EV. In this paper, IPMSM speed control ability is verified by simulation using PSIM.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

Nominal States Relationship and Its Sliding Mode Control Application

  • Kim, Min-Chan;Ko, Chang-Min;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung;Ahn, Ho-Kyun
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.356-360
    • /
    • 2009
  • A novel method to derive a Nominal States Relationship (NSR) of a control system is proposed. The obtained relationship is used to design a sliding surface which can have the characteristic of a nominal system. With this sliding surface, a Sliding Mode Control (SMC) system which has the characteristics of the nominal system controlled by pole placement is designed for an uncertain system.

The Control of an Inverted Pendulum using Fuzzy-Sliding Control (퍼지 슬라이딩 제어를 이용한 도립 진자 제어)

  • Jang, Byeong-Hun;Ko, Jae-Ho;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.480-482
    • /
    • 1998
  • Sliding mode is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. This study shows that the proposed fuzzy sliding mode control could reduce chattering problemed in sliding mode control. In this paper, an inverted pendulum is effectively controlled by the fuzzy sliding control technique. To reduce movable region of the inverted pendulum body, the angle and its integrated quantity are applied to the controller. The effectiveness of result is shown by the simulation and the experimental test for the inverted pendulum.

  • PDF

A New Method of Collision Mode Evolution for Three-Dimensional Rigid Body Impact With Friction

  • Park, Jong-Hoon;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1769-1775
    • /
    • 2004
  • In presence of collision between two rigid bodies, they exhibit impulsive behavior to generate physically feasible state. When the frictional impulse is involved, collision resolution can not be easily made based on a simple Newton's law or Poisson's law, mainly due to possible change of collision mode during collision, For example, sliding may change to sticking, and then sliding resumes. We first examine two conventional methods: the method of mode evolution by differential equation, and the other by linear complementarity programming. Then, we propose a new method for mode evolution by solving only algebraic equations defining mode changes. Further, our method attains the original nonlinear impulse cone constraint. The numerical simulation will elucidate the advantage of the proposed method as an alternative to conventional ones.

  • PDF

The Sliding Controller designed by the Indirect Adaptive Fuzzy Control Method (간접 적응 퍼지 제어기법에 의한 슬라이딩 제어기 설계)

  • Choi, Chang-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2283-2286
    • /
    • 2000
  • Sliding control is a powerful approach to controlling nonlinear and uncertain systems. Conventional sliding mode control suffer' from high control gain and chattering problem. also it needs mathematic! modeling equations for control systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. In this paper, without mathematical modeling equations, the plant parameters in sliding mode are estimated by the indirect adaptive fuzzy method. the proposed algorithm could analyze the system's stability and convergence behavior using Lyapunov theory. so sliding modes are reconstructed and decreased tracking error. moreover convergence time took a short. An example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF