• 제목/요약/키워드: Sliding mode method

검색결과 590건 처리시간 0.028초

비선형 시스템에 대한 강인 반복 제어기 (Robust Repetitive Control for a Class of Nonlinear Systems)

  • 서원기
    • 전자공학회논문지SC
    • /
    • 제40권6호
    • /
    • pp.1-7
    • /
    • 2003
  • 본 논문은 비선형 시스템에서 시스템의 출력이 주기적인 특징을 가지는 궤적을 따라가도록 하는 슬라이딩 모드 반복 제어기를 소개한다. 본 논문에서 제안하는 제어기는 전체 시스템을 안정화시키며 출력오차를 어떤 범위 안으로 지수적으로 수렴시키는 슬라이딩 모드 제어기와 추적 오차의 수렴을 위해서 사용되는 반복 제어기로 구성되어 있다. 본 논문에서는 제안하는 슬라이딩 모드 제어기는 기존의 방법과는 다르게 제어입력의 크기가 추적오차의 크기에 비례하게 되어 있어서 시스템의 차수를 올리지 않고 정상상태에서의 채터링(chattering) 문제를 크게 개선하는 특징을 가지고 있다.

슬라이딩 모드를 이용한 차량 간격 자동 제어 알고리즘에 관한 연구 (A Study on the Autonomous Cruise Control using the Sliding Mode)

  • 이동현;장광수
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.92-101
    • /
    • 2000
  • The objective of this paper is to design the controller for longitudinal vehicle following which makes the vehicle follow the lead vehicle and keeps a safety distance without human driver operation. This paper presents a sliding mode control algorithm for the ACC system. The controller is based on three sliding surfaces. Each surface plays an individual control-deviation control, throttle control and brake control. In addition to sliding mode control, we propose some additional schemes to enhance controller performance. The first one is a gear shift-down controller which makes tractive force increase with a change of gear ratio. The other is a predictive correction method which reduces slinky effect.

  • PDF

Sliding mode control of a nonlinear electromagnetic levitation system

  • Fujimoto, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.4-48
    • /
    • 2001
  • Major objective of this paper is to develop the sliding mode control method for a nonlinear electro magnetic levitation system governed by a set of a second-order motion equation and a first-order electromagnetic equation. Simulations for initial responses were carried out to confirm the validity of the present design method.

  • PDF

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

고정자 저항 추정기틀 갖는 슬라이딩 모드 관측기를 이용한 SRM 센서리스 제어 연구 (A novel Sensorless Control of SRM using the Sliding Mode Observer with the Estimation of Stator Resistance)

  • 오주환;이진우;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.79-82
    • /
    • 2003
  • This paper presents a new speed and position sensorless of Switched Reluctance Motor(SRM) based on the sliding mode observer. The sliding mode observer structure and its design method are discussed. Also, Lyapunov functions are chosen for determining the speed and the stator resistance estimator. The effectiveness of the proposed observer system is confirmed by the computer simulation.

  • PDF

가중치를 고려한 슬라이딩 모드 제어기 설계 (Sliding Mode Controller Design Considering Weight)

  • 임동균;서병설
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 연구회 합동 학술발표회 논문집
    • /
    • pp.73-77
    • /
    • 1998
  • The conventional sliding mode controller (SMCr) approach is often impractical or difficult when applied to high order process because the number of tuning parameters in the SMCr increases with the order of the plant. Camacho(1996) proposed the design of a fixed structure sliding mode controller based on a first order plus dead time approximation to the higher-order process. But, there are such problems as overshoot, settling time and command following. They are mainly due to the approximation errors of the time delay term by Taylor series. In this paper, in order to improve Camcho's method, a new Taylor approximation technique considering a weight is proposed.

  • PDF

공간벡터 변조법을 적용한 BLDC 전동기에 대한 슬라이딩 모드 속도 제어기 설계 (Design of a Sliding Mode Speed Controller for the BLDC Motor Using the Space Vector Modulation Technique)

  • 최중경;박승엽;황정원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1125-1128
    • /
    • 1999
  • This paper presents a speed controller for the Sinusoidal type BLDC motor using the sliding mode. Since the sliding mode control has some practical limitations such as the chattering phenomenon and reaching phase problems, the technique of overcoming these limitations is proposed in a practical realization. This proposed speed control technique is composed of an smooth integral variable structure control(IVSC), and chattering prediction method.

  • PDF

Fuzzy Sliding Mode Observer for Nonlinear System

  • Seo, Sam-Jun;Kim, Dong-Sik;Seo, Ho-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.42.2-42
    • /
    • 2001
  • This paper deals with a fuzzy sliding mode observer for nonlinear systems. A nonlinear system is approximated by a multiple model Takagi Sugeno fuzzy system and then transformed into a canonical form for which a nonlinear observer is constructed. This study presents a type of fuzzy sliding mode observer that deals with matched and unmatched uncertainties in the plant dynamics very effectively. The proposed method was validated by the example of a inverted pendulum.

  • PDF

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

채터링 제거를 위한 유도 전동기의 슬라이딩 모드 제어기 설계 (Design of Sliding Mode Controller for Induction Motor to Remove Chattering)

  • 김성읍;곽군평;안호균
    • 전력전자학회논문지
    • /
    • 제3권3호
    • /
    • pp.240-245
    • /
    • 1998
  • 본 논문에서는 전동기의 슬라이딩 모드 제어기가 설계되었다. 슬라이딩 모드 제어기의 단점인 채터링 현상을 제거하기 위해 연속치 제어입력이 제안되었으며 제안된 기법으로 고속 마이크로 프로세서인 DSP를 이용한 유도전동기의 속도제어를 보였다. 슬라이딩 모드하에서의 유도 전동기의 각속도가 지정된 궤적을 추종하도록 동작한다. 실험 결과를 통해 제안된 방법의 유용성을 보였다.

  • PDF