• Title/Summary/Keyword: Sliding mode control design

Search Result 554, Processing Time 0.027 seconds

A study on the design of a path tracker and depth controller for autonomous underwater vehicles (무인 수중운동체의 경로추적기와 심도제어기 설계 연구)

  • Yang, Seung-Yun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • In this paper, a robust path tracker and depth controller of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also designed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance.

  • PDF

Design of a DC Motor Current Controller Using a Sliding Mode Disturbance Observer and Controller (슬라이딩 모드 외란 관측기와 제어기를 이용한 DC 모터 전류 제어기 설계)

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.417-423
    • /
    • 2016
  • Using a sliding mode controller and observer techniques, this paper presents a robust current controller for a DC motor in the presence of parametric uncertainties. One of the most important issues in the practical application of sliding mode schemes is the chattering phenomenon caused by switching actions. This paper presents a novel sliding mode controller that incorporates an integral control with a sliding mode disturbance observer to attenuate the chattering by reducing the controller/observer switching gains. The proposed sliding mode disturbance observer is designed to estimate a relatively slow varying signal in the equivalent lumped disturbance owing to system uncertainties. Combining the estimated uncertainty with the sliding mode control input, the proposed controller can achieve the control objective by using the relatively low gain of the controller. The proposed disturbance observer does not include the switching control input of the baseline sliding mode controller to reduce the observer switching gain. In the proposed approach, the integral sliding mode control is used to improve the steady state control performance. Comparative computer simulations are carried out to demonstrate the performance of the proposed method. Through the simulation results, the proposed controller realizes the robust performance with reduced current ripples.

Design of Optimal Controller Using Discrete Sliding Mode

  • Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Nam Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.198-201
    • /
    • 2004
  • In this paper, the discrete optimal control is made to have the robust property of Sliding mode controller. A augmented system with a virtual state is constructed for this objective and noble sliding surface is constructed based on this system. The sliding surface is the same as the optimal control trajectory in the original system. The states follow the optimal trajectory even if there exist uncertainties. The reaching phase problem of sliding mode control is disappear in this method.

Design of a Discrete Time Sliding Mode Controller for Laser Marking System (레이저 마킹 시스템의 이산시간 슬라이딩 모드 제어기 설계)

  • 이충우;채수경;최재모;정정주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.304-311
    • /
    • 2004
  • In this paper we present a technique of discrete-time sliding mode controller design for assigning eigenvalues of sliding mode and determining a convergence rate to sliding surface. First the sliding mode coefficient is designed via Ackermann s formula. Then a linear controller is designed to enforce sliding mode such that the resulting closed loop yields the desired eigenvalues. As we use a linear control instead of nonlinear control, chattering is nearly eliminated. Simulation and experimental results are included to show the effectiveness of the proposed method for Laser Marking System.

Robust Sliding Mode Control for Mismatched Uncertainties (비정합 불확실 시스템을 위한 견실한 슬라이딩 모드 제어)

  • 두상호;김가규;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.345-345
    • /
    • 2000
  • This paper introduces a new design approach for robust sliding-mode control of a class of mismatched uncertainties. For this, we propose a design method of sliding-mode surface using eigenstructure assignment to be insensitive to perturbation in sliding-mode systems, and also find a formula which is shown bounds of mismatched uncertainties for stability of the system. Simulation results are given to illustrate the approach proposed in this paper.

  • PDF

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Sliding Mode Control Design for Polytopic Models (폴리토픽 모델을 위한 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.667-670
    • /
    • 2009
  • This paper presents an LMI-based method to design a sliding mode controller for a multivariable uncertain system with a polytopic model. In terms of LMIs an existence condition of a sliding surface is derived. And a switching feedback control law is given. Finally, a numerical design example is given to show that the proposed method can be better than the existing results.

An LMI-Based Sliding Mode Observer Design Method for Uncertain Time-Delay Systems (불확실한 시간 지연 시스템을 위한 LMI 기반 슬라이딩 모드 관측기 설계법)

  • Choi Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1018-1021
    • /
    • 2006
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. Finally, we give a simple LMI-based design algorithm, togeter with a numerical design example.

Sliding Mode Control for Linear System with Mismatched Uncertainties (정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어)

  • 성재봉;권성하;박승규;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.25-25
    • /
    • 2000
  • This paper presents a design method of sliding mode control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we define a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with only mismatched uncertainties using a form of linear matrix inequality (LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding mode controller that stabilizes the overall closed-loop system.

  • PDF

A fuzzy sliding mode controller design for the hovering system of underwater vehicles (수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계)

  • Kim, Jong-Sik;Kim, Sung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF