• Title/Summary/Keyword: Sliding Motion

Search Result 434, Processing Time 0.04 seconds

Stress Analysis of the Cylinder Block and the Valve Plate of the Swash Plate Type Oil Hydraulic Piston Pump (사판식 유압 픽스톤 펌프의 실린더블록과 밸브 플레이트의 응력해석)

  • Kim J. H.;Cho I. S.;Baek I. H.;Jung Jae-Youn;Oh Suk-Hyung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.255-260
    • /
    • 2004
  • Recently, the technologies related to the swash plate type oil hydraulic piston pump are requiring extreme technologies to overcome the limit of high efficiency in cope with high speed and pressure, and are devoted to compact the unit, to gain low noise level, and to adopt electronic technologies, and the question regarding to maximize the mechanical efficiency, that is, to minimize the torque loss by minimizing the leakage loss in the relative sliding region but these are in trade-off relation that tribological responding is very difficult. Cylinder block-valve pate in high speed relative sliding motion has the characteristics that should be extremely controlled for the optimization of these leakage loss and mechanical efficiency, and pressure resistance designing of them is important for high pressure performance. But, studies on the stress analysis of these parts have not been performed briskly, so in this paper the stress distribution and the region where the highest displacement appears are described through the static stress analysis using CATIA V5. Through the future studies on these theme, it has the purpose of finding the suitable materials for the other parts as well as cylinder block and valve plate, in cope with high pressure operation through the stress analysis with the most similar conditions for the practical operation.

  • PDF

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes (비정렬 적응 격자계를 이용한 비정상 로터-동체 공력 상호작용 모사)

  • Nam, H.-J.;Park, Y.-M.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.11-21
    • /
    • 2005
  • A three-dimensional parallel Euler flow solver has been developed for the simulation of unsteady rotor-fuselage interaction aerodynamics on unstructured meshes. In order to handle the relative motion between the rotor and the fuselage, the flow field was divided into two zones, a moving zone rotating with the blades and a stationary zone containing the fuselage. A sliding mesh algorithm was developed for the convection of the flow variables across the cutting boundary between the two zones. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the wake. A low Mach number pre-conditioning method was implemented to relieve the numerical difficulty associated with the low-speed forward flight. Validations were made by simulating the flows around the Georgia Tech configuration and the ROBIN fuselage. It was shown that the present method is efficient and robust for the prediction of complicated unsteady rotor-fuselage aerodynamic interaction phenomena.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF

Vibration characteristics change of a base-isolated building with semi-active dampers before, during, and after the 2011 Great East Japan earthquake

  • Dan, Maki;Ishizawa, Yuji;Tanaka, Sho;Nakahara, Shuchi;Wakayama, Shizuka;Kohiyama, Masayuki
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.889-913
    • /
    • 2015
  • Structural vibration characteristics of a semi-active base-isolated building were investigated using seismic observation records including those of the 2011 Great East Japan earthquake (Tohoku earthquake). Three different types of analyses were conducted. First, we investigated the long-term changes in the natural frequencies and damping factors by using an ARX model and confirmed that the natural frequency of the superstructure decreased slightly after the main shock of the Tohoku earthquake. Second, we investigated short-term changes in the natural frequencies and damping factors during the main shock by using the N4SID method and observed different transition characteristics between the first and second modes. In the second mode, in which the superstructure response is most significant, the natural frequency changed depending on the response amplitude. In addition, at the beginning of the ground motion, the identified first natural frequency was high possibly as a result of sliding friction. Third, we compared the natural frequencies and damping factors between the conditions of a properly functional semi-active control system and a nonfunctional system, by using the records of the aftershocks of the Tohoku earthquake. However, we could not detect major differences because the response was probably influenced by sliding friction, which had a more significant effect on damping characteristics than did the semi-active dampers.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Development of Laser Processing Technology and Life Evaluation Method for Lifespan Improvement of Titanium Superhydrophobic Surface (티타늄 초소수성 표면의 수명 향상을 위한 레이저 처리 기법 개발 및 내수명성 평가법 개발)

  • Kyungeun Jeong;Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Song Yi Jung;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.91-96
    • /
    • 2024
  • Recently, extensive studies have been carried out to enhance various performance aspects such as the durability, lifespan, and hardness by combining diverse materials or developing novel materials. The utilization of superhydrophobic surfaces, particularly in the automotive, textile, and medical device industries, has gained momentum to achieve improved performance and efficiency. Superhydrophobicity refers to a surface state where the contact angle when water droplets fall is above 150°, while the contact angle during sliding motion is smaller than 10°. Superhydrophobic surfaces offer the advantage of water droplets not easily sliding off, maintaining a cleaner state as the droplets leave the surface. Surface modification involves two fundamental steps to achieve superhydrophobicity: surface roughness increase and surface energy reduction. However, existing methods, such as time-consuming processes and toxic organic precursors, still face challenges. In this study, we propose a method for superhydrophobic surface modification using lasers, aiming to create roughness in micro/nanostructures, ensuring durability while improving the production time and ease of fabrication. The mechanical durability of superhydrophobic samples treated with lasers is comparatively evaluated against chemical etching samples. The experimental results demonstrate superior mechanical durability through the laser treatment. Therefore, this research provides an effective and practical approach to superhydrophobic surface modification, highlighting the utility of laser treatment.

Physical knowledge in children: Children's developing understanding of object motion (아동의 물리지식: 물체의 운동에 대한 아동의 이해와 발달)

  • Park Sunmi
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.31-47
    • /
    • 2004
  • This study was carried out to examine the development of physical knowledge in children. Eighty children aged 3- to 11-year-old and 16 adults were participated in this study. Participants' knowledge about failing, sliding and sinking/floating objects was investigated to understand what kind of knowledge they had, whether their knowledge was organized as theory and what was the nature of the developmental change in physical knowledge. Results showed that, for falling object task children of all age had correct knowledge about object's falling phenomena. However, there were age differences in children's understanding of the cause of object's falling. As the children's age decreased, the frequency of explanation referring to the absence of supper rather than the gravity as the cause of falling phenomena increased. For the sliding object task, children of all age could predict the motion of sliding object correctly. But only a few 9- and 11-year-old children could understand the effect of object weight and relations between gravity, frictional force and their interactions. Children under age 7 showed no evidence of possessing these knowledge. For sinking or floating object task, children of all age and even adults showed difficulties in understanding the sinking or float phenomena per se. For the cause of these phenomena although a few 9- and 11-year-old children referred to buoyancy as the cause, they had no correct knowledge about the buoyancy. This was also true for the adults. As a conclusion, the results of this study suggested that, not 3, but as young as 5-year-old children's physical knowledge exited as a form of naive theory in terms of their use as a causal devise in explaining the cause of object motion. However, even the theory of 9- and 11-year-old children was lack of the abstractness and coherence, which were also important characteristics of a theory. Finally, developmental change in physical knowledge proceeded toward more frequent and consistent use of physical knowledge as causal device and more abstract and coherently organized theory.

  • PDF

Dosimetric Evaluation of Static and Dynamic Intensity Modulated Radiation Treatment Planning and Delivery (세기조절방사선치료에서 조사방법이 빔 파라미터 및 선량에 미치는 영향에 대한 연구)

  • Kim Sung-Kyu;Kim Myung-Se;Yun Sang-Mo
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2006
  • The two commonly used methods in delivering intensity modulated radiation therapy (IMRT) plan are the dynamic (sliding window) and static (stop and shoot) mode. In this study, the two IMRI delivery techniques are compared by measuring point dose and dose distributions. Using treatment planning system, clinical target volume (CTV) was created as a sphere with various diameter (3 cm, 7 cm, 12 cm). Two IMRT plans were peformed to deliver 200 cGy to the CTV in dynamic and static mode. The two plans were delivered on a phantom and central point dose and dose distributions were measured. The central point dose differences between static and dynamic IMRT delivery were 0.2%, 0.2% and 0.4% when the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. The differences In volume receiving 90% of the proscribed dose were 2.7%, 2.2%, and 2.9% for the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. For lung cancer patients, the differences in central point dose were 0.2%, 0.2%, and 0.4% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. The differences in volume receiving 90% of the prescribed dose were 2.7%, 4.8%, and 9.1% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. In conclusion, it was possible to deliver IMRT plans using dynamic mode of MLC operation although the loaves are In motion during radiation delivery.

  • PDF