• Title/Summary/Keyword: Sliding Mode Control(SMC)

Search Result 199, Processing Time 0.027 seconds

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

A Study on Response Time Delay and Tracking Error Suppression Strategy in Gear Mechanism : Control System Design Approach (기어 백래쉬로 인한 응답지연 및 추종오차 억제방안에 관한 연구)

  • Tran, Manh Son;Choi, Eun-Ho;KIM, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.77-83
    • /
    • 2017
  • The aim of this paper is to solve the chattering and delayed response problems caused by gear backlash. In the gear mechanism based systems, for example, in robot systems, the actuators provide the reduction gear with motors to transfer effectively electric power to mechanical power. Therefore, the gear backlash exists and is an unavoidable fact which makes many undesirable problems. In this paper, the authors try to make a solution for this issue and, introduce several control methods which are PID only, PID with Smith predictor and super-twisting algorithm based SMC(sliding mode control). Each control method is applied to the real plant in which strong backlash is included. By comparison results, it is clear that SMC gives the best control performance with little backlash effects. Also, the usefulness and effectiveness of proposed control method is verified by experiment.

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

Robust Stability of TSK-type Time-Delay FLC (TSK-type 시간 지연 퍼지 제어기의 강인한 안정성)

  • 명환춘;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.4-7
    • /
    • 2001
  • A stable TSK-type FLC can be designed by the method of Parallel Distributed Compensation (PDC), but in this case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC (TDFLC) is proposed. TSK-type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC) schemes, which result in a robust controller basaed upon an integral sliding surface.

  • PDF

Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention (차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

A Study on the Chattering Elimination in the SMC without Matching Condition (정합조건을 만족하지 않는 슬라이딩 모드 제어에서의 채터링 제거에 관한 연구)

  • Park, Seung-Kyu;Jin, Mi-Jung;Ahn, Ho-Kyun;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.561-563
    • /
    • 1998
  • In this paper, new sliding mode control method is proposed to reduce the input chattering. In this procedure, virtual state is defined and augmented system is constructed based on it. For the augmented system, new SMC is designed and low pass filtered. The actual input to the system is the filtered SMC. The reaching phase problem is solved by setting the virtual state to make the initial value of sliding function equal to zero.

  • PDF

Adaptive Sliding Mode Control Synthesis of Maritime Autonomous Surface Ship

  • Lee, Sang-Do;Xu, Xiao;Kim, Hwan-Seong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.306-312
    • /
    • 2019
  • This paper investigates to design a controller for maritime autonomous surface ship (MASS) by means of adaptive super-twisting algorithm (ASTA). A input-out feedback linearization method is considered for multi-input multi-output (MIMO) system. Sliding Mode Controller (SMC) is suitable for MASS subject to ocean environments due to its robustness against parameter uncertainties and disturbances. However, conventional SMC has inherent disadvantages so-called, chattering phenomenon, which resulted from the high frequency of switching terms. Chattering may cause harmful failure of actuators such as propeller and rudder of ships. The main contribution of this work is to address an appropriate controller for MASS, simultaneously controls surge and yaw motion in severe step inputs. Proposed control mechanism well provides convergence bewildered by external disturbances in the middle of steady-state responses as well as chattering attenuation. Also, the adaptive algorithm is contributed to reducing non-overestimated value of control gains. Control inputs of surge and yaw motion are displayed by smoother curves without excessive control activities of actuators. Finally, no overshoot can be seen in transient responses.

Robust Controller Design with Novel Sliding Mode Surface-Linear Optimal Control Case (새로운 스위칭 평면을 이용한 강인한 최적 제어기의 설계)

  • Park, Seung-Kyu;Ahn, Ho-Kyun;Kim, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.446-448
    • /
    • 1998
  • In this paper, a novel sliding surface is proposed by introducing a virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have one higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial switching function equal to zero.

  • PDF

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

The Novel Sliding Mode Controller for Discrete-time System with Multi-Input (다중입력 이산치계통에 대한 새로운 슬라이딩 모드 제어기의 설계)

  • Park, Seung-Kyu;Jin, Mi-Jung;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.906-908
    • /
    • 1999
  • In this paper, new sliding mode surfaces are proposed by defining novel virtual states. These sliding surfaces have nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have m-th higher order than those of the original system where m is the number of inputs. The reaching phase is removed by setting the initial virtual states which makes the initial switching functions equal to zero.

  • PDF