• Title/Summary/Keyword: Slake durability index

Search Result 12, Processing Time 0.024 seconds

Slope Instability Problem in Claystone Area (점토질 암반에서 발생하는 암반사면의 불안정성 문제)

  • Park, Hyuck-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.239-246
    • /
    • 2005
  • slaking 은 굴착에 의해 노출된 암반에서 발생하는 강도저하 및 입자간의 결합력 약화에 의해 암반이 세립화하는 현상이다. 이러한 slaking은 특히 퇴적암으로 구성된 암반사변의 안정성에 영향을 미치는 중요한 인자로 작용한다. slaking에 의한 암반사면의 불안정성은 신생대의 이질암이나 미고결 응회암에서와 같이 암반 자체의 강도 저하 및 결합력 약화에 의해 발생하는 붕괴현상과 차별풍화에 의해 이암 등이 급속도로 쇄굴 및 풍화되어 상부에 놓여 있는 암석이 낙석 등의 형태로 붕괴되는 현상으로 구분할 수 있다. 본 연구에서는 이암의 차별풍화에 의해 사면의 불안정성이 유발되는 연구지역을 대상으로 풍화 및 쇄굴 속도와 slake의 상관관계를 밝히고자하였다. 이를 위하여 slake test와 slake durability test를 수행하였으며 slake durability index를 획득하였다. 실험을 통해 획득된 slake durability index를 연간 쇄굴속도와 비교하여 상관관계를 검토하였으며 기존의 연구결과와 비교하여 slake durability index를 활용하여 쇄굴 정도를 예측할 수 있는 가능성을 제시하였다.

  • PDF

Changes of Material Properties of Pre-heated Tuff Specimens (예열처리된 응회암 시험편의 물성 변화)

  • Yoon, Yong-Kyun;Kim, Sa-Hyun
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • Tuff specimens were thermally treated with predetermined temperatures of 200, 400 and $600^{\circ}C$ to construct specimens simulating weathered tuff rocks. Specific gravity, absorption ratio, elastic wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio and slake-durability index were measured for pre-heated specimens. Heating of rock specimens entailed the degradation of material properties except for slake-durability index. It was found that correlations among P-wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio are high. Regression equations which use the P-wave velocity as an independent variable were presented to evaluate uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio.

A Study on Durability Test of Cemented Soils (시멘트 혼합토의 내구성 평가법에 관한 연구)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.79-86
    • /
    • 2012
  • Cemented soils have been used for subbase or base materials of roads, backfill materials of retaining walls and cofferdam. Such cemented soils can be degraded due to repeated wetting and drying or various weathering actions. Unlike rocks, a standard method was not defined for evaluating the durability of cemented soils. In this study, a slaking durability test and an ultrasound cleaner were used for developing a new durability test method for cemented soils. For durability tests, cemented sands with different cement ratios (4, 6, 8, and 12%) with cylindrical specimens were prepared and then air cured or under-water cured for three days. Three-day-cured specimens were dried for one day and then submerged for one day before testing. The weight loss after the slake durability test or ultrasonic cleaner operation for 10 or 20 min was measured and used for assessing durability. When a cement ratio was 4%, the weight loss from ultrasonic cleaner test was 7-25% but that from slake durability test was as much as 30-60%. For specimens with cement ratio of more than 8%, the weight loss was less than 10% from both tests. A durability index increased with increasing a cement ratio. The durability index of under-water cured specimen was higher than that of air cured specimen. The ultrasonic cleaner test was found to be an effective tool for durability assessment of cemented sands rather than the slake durability test.

Slaking Characteristics of shale in the Gyoungsang Super-group, Korea (경상누층군 셰일의 내구성 특성)

  • Park, Sung-Sik;Ye, Sung-Ryol;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Because of a fissility characteristics of shale in the Gyoungsang super-group, it breaks down to debris when daylighted by construction work and causes a slope unstability. To assess the durability property of shale, a series of slake durability tests was conducted by controlling test conditions such as shape of specimen, number of specimen, revolution speed, revolution number, drying temperature and pH of submerging liquid. For the specimen shape, cube one showed relatively lower durability index than cuboid and/or fan shape one. The test with the more number of specimens showed the less durability index because of a higher friction among specimens in the drum. The durability index is linearly decreased by increasing the total number of revolution, while the revolution velocity could not affect the index. And the durability index is also decreased by increasing the drying temperature of specimen and by decreasing the pH of submerging liquid. Because the durability index of shale is almost similar to that of crystalline rocks, the disintegration characteristics of shale could not be assessed by the slake durability test recommended by ISRM, and thus a new test method by changing the total revolution number may be required for the shale having fissility characteristics.

Engineering Properties of Red Shale and Black Shale of the Daegu Area, Korea (대구지역 적색 셰일과 흑색 셰일의 공학적 특성)

  • Kwag, Seong-Min;Jung, Yong-Wook;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.341-352
    • /
    • 2013
  • The physical and mechanical properties of red shale and black shale exposed in the Daegu area were investigated in tests conducted to determine unit weight, absorption ratio, porosity, ultrasonic velocity, unconfined compressive strength, point load strength, slake durability index, and deterioration characteristics. XRD, XRF, and SEM analyses were also performed on the shale specimens. While the unit weights of the two shales were similar, the absorption ratio and porosity were higher in the red shale than in the black shale. Despite the higher porosity of the red shale, the ultrasonic velocity, compressive strength, and point load strength were higher in the red shale, which is an unexpected result that may be due to the presence of fine laminations in the black shale. The deterioration rate, as determined from the point load strength and the slake durability index, increased with increasing immersion time and with the acidity of the immersion liquid. The deterioration rate was higher for the red shale than for the black shale because of the higher porosity of the former.

Analysis of the Mechanical Properties and Slake Durability of Fresh to Weathered Cretaceous Shale (풍화에 따른 백악기 셰일의 물성 및 슬레이크 내구성에 관한 연구)

  • Kim, Hai-Gyoung;Kim, Tae-Kuk;Oh, Kang-Ho
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2010
  • We performed laboratory measurements of the mechanical properties and slake durability of Cretaceous shale from the Hwasun area, Korea, including highly weathered and fresh samples, yielding ranges of specific gravity of 2.14-2.88, dry density of 1.86-2.83(g/$cm^3$), water content of 0.12-6.36 (%), porosity of 1.33-20.49 (%), and absorption ratio of 0.51-8.5 (%). The absorption ratio shows a strong linear relation with porosity, expressed as Ab = 0.44P-0.09 (Ab: absorption ratio, P: porosity). Values of the slake durability index ($Id_2$) and point load intensity index ($Is_{(50)}$) of highly weathered to fresh shale are 90.07-99.33 (%) and 10.8-90.2(kg/$cm^2$), respectively. $Id_2$ is linearly related to $Is_{(50)}$, expressed as $Is(50)=1E-07e^{0.2033Id_2}$(kg/$cm^2$)($r^2=0.69$). This equation is a useful tool for estimating the $Id_2$ value for shale in the Hwasun area.

Properties of Pohang Mudstone with High Porosity According to Water Immersion (수침에 따른 공극률이 큰 포항 이암의 특성)

  • Kim, Byung-Soo;Lee, Yun-Jae;Kim, Tae-Hyung;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.83-92
    • /
    • 2021
  • In this study, effective porosity measurement, electron microscope (SEM) observation, X-ray diffraction analysis (XRD), slaking, swelling, and unconfined compression strength according to water immersion were analyzed to evaluate the properties of mudstone with high porosity in Pohang. As a result of the test for 16 square samples (5 cm), the effective porosity was 14.67% on average, higher than porosity of general mudstone, and electron microscope observation confirmed that the porosity was actually high. As a result of X-ray diffraction analysis, the swelling clay mineral content was 2.3~4.1%, which was lower than the results of previous studies in Pohang. The slake durability index was 37.73~87.73%, showing low to medium durability, which was lower than the results of previous studies. It was confirmed that the swelling property rapidly expanded to 1.79~1.82% of maximum swelling strain in the major axis direction for 30 minutes. As the properties of decreasing the unconfined compression strength according to water immersion, the samples rapidly weathered after 10 minutes of water immersion, and the strength decreased. It was confirmed that the results of previous studies related to mudstone in Pohang were different. This is judged to be due to the high porosity of mudstone in study.

Engineering Properties of Uncemented Mudrock from Yeoju Area, Gyeonggi-Do (경기도 여주지역 미고결 이암의 공학적 특성)

  • Ban, Hoki;Lee, Huiyoun;Bae, Kyujin;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.53-58
    • /
    • 2015
  • Engineers should take great care of characterizing the engineering properties of mudrock, because the uncemented mudrock can be considered as a hard rock in appearance. Therefore, the mudrock samples obtained from the cut slope in Gyeongki-do were tested to evaluate the strength characteristics of uncemented mudrock in this study. The performed tests are index properties, slake durability, and swelling tests for the classification of the mudrock for engineering practice. To evaluate the effect of water on the engineering properties of the uncemented mudrock, resonant column, triaxial compression and direct shear tests with various water contents were performed. With the increasing water contents, stiffness at very small to small strain region and the cohesion value of the strength parameters decrease. Based on the test results, engineers should take great care of evaluating the engineering properties of uncemented mudrock.

A Study of Engineering Properties and Deformation Behavior of Weathered Rock Mass (풍화 암반의 공학적 특성 및 변형거동에 관한 연구)

  • 강추원;박현식;김수로
    • Explosives and Blasting
    • /
    • v.22 no.2
    • /
    • pp.33-43
    • /
    • 2004
  • The six grades weathering system is normally used in weathered rock classification. In this study. fresh and weathered rock block of grade I to V were sampled in Jang-soo ana but samples of the grade VI was omitted from this study. The variation quantities of chemical weathering indices with weathering degree are smaller than those of physical and mechanical properties. Increase of Weathering degree is well indicated by physical and mechanical properties such as strength, hardness, ultrasonic velocity and slake durability result. Especially, absorption and porosity ratio is a good indicator. As weathering proceeds. a number of the cracks affect the rock deformation. Therefore, stress-strain curves of weathered rocks in unconfined state are quite different from ones of fresh rocks.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.