• Title/Summary/Keyword: Slag powder

Search Result 367, Processing Time 0.026 seconds

An Experimental Study on the Development of Early Strength in Concrete using Blast Furnace Slag Powder (고로슬래그콘크리트의 초기강도 증진에 관한 실험적 연구)

  • 박유신;조재우;김영근;김대영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.293-296
    • /
    • 1999
  • Blast Furnace Slag Powder is potential hydration material, then that is well known to evidently inferior early strength, in fact because of feeble solidify. So this experience is that Blast Furnace Slag Powder as 4000, 6000, 8000$\textrm{cm}^2$/g of blain as 15, 35% of replacement ratio, SO3 is maxed as 0.5, 1.0% of binder ratio for intention to increase of strength.

  • PDF

The Fluidity and Compressive Strength of Non-Cement Porous Block Using High Volume Blast Furnace Slag Powder (고로슬래그 미분말을 대량 활용한 무시멘트 투수블록의 유동성 및 압축강도 특성)

  • Kim, Young-Uk;Kim, Sung-Jin;Kim, Hye-Jeong;Jeong, Su-Bin;Choi, Hee-Yong;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.212-213
    • /
    • 2017
  • The study investigated the fluidity and compressive strength of non-cement porous block using blast furnace slag powder to reduce CO2 in the construction industry.

  • PDF

Evaluation of Compressive Strength and Drying Shrinkage Properties of Mortar Using Ferronickel Slag Powder (페로니켈 슬래그 미분말 혼입 모르타르의 압축강도 및 건조수축 특성 평가)

  • Kim, Young-Uk;Kim, Do-Bin;Lee, Dong-Joo;Kim, Hye-Jeong;Jeong, Su-Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.93-94
    • /
    • 2018
  • This study investigated the compressive strength and drying shrinkage properties of mortar using ferronickel slag powder by the kinds of industrial by-product to estimate the applicability of ferronickel slag powder for cement replacement materials.

  • PDF

Fluidity and strength characteristics of no-cement composite applied with ferronickel slag powder according to curing temperature (양생온도에 따른 페로니켈슬래그 미분말 적용 무시멘트 복합체의 유동성 및 강도특성)

  • Kim, Chae-Young;Yoon, Joo-Ho;Park, Jeong-Yeon;Park, Gwan-Hong;Lee, Jae-In;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.193-194
    • /
    • 2023
  • Recently, research is being conducted on geopolymers using industrial by-products as a cement substitute to reduce carbon dioxide emissions from the construction industry. Since geopolymers use industrial by-products, their performance varies depending on the type of alkali activator used, curing temperature, etc. Therefore, as part of a study to reduce carbon dioxide emissions from the construction industry, this study mixed blast furnace slag powder and ferronickel slag powder as cement substitutes, and compared and analyzed the fluidity and compressive strength of no-cement composites according to curing temperature.

  • PDF

Effect of Gypsum Mixture on Activation of Coal Gasification Slag (석고 혼입이 석탄가스화 슬래그의 활성화에 미치는 영향)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.17-18
    • /
    • 2019
  • In this study, the initial strength reduction of coal gasification slag fine powders was confirmed through previous studies when used in cement formulations. It is also confirmed that the blast furnace slag is mixed with cementitious coal blast furnace slag, which is similar to coal gasification slag, to incorporate gypsum in order to prevent initial strength deterioration. In order to analyze the reactivity of coal gasification slag by desulfurization gypsum, the formation of hydrates and their reactivity at early ages were confirmed by electron microscope. In order to confirm the reactivity, the gypsum samples were prepared with unincorporated type and 2% mixed type. Experimental results showed that 2% of the desulfurized gypsum specimens reacted more actively than the uninjured ones.

  • PDF

Physical and Mechanical Properties of Low Carbon Green Concrete (저탄소 그린콘크리트의 물리·역학적 특성)

  • Cho, Il Ho;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • This study was performed to evaluate the slump flow, air content, setting time, compressive strength, adiabatic temperature rise and diffusion coefficient of chloride used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furnace slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performances of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for low carbon green concrete material.

Durability Properties of Low Carbon Green Concrete (저탄소 그린콘크리트의 내구 특성)

  • Cho, Il Ho;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.11-17
    • /
    • 2013
  • This study was performed to evaluate the chlorine ion penetration resistance, chemical resistance and freezing and thawing resistance used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furance slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performance of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for offshore structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for offshore structure materials.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

An Study on Compressive Strength Properties of Mortar with Municipal Solid Waste Incineration Ash Melted Slag Powder (쓰레기 소각재 용융슬래그 미분말을 혼입한 모르타르의 압축강도 특성에 대한 연구)

  • Lee, Yong-Moo;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • In order to investigate the feasibility of municipal solid waste incineration ash melted slag powder as admixture, an experimental study was performed on cement mortar with municipal solid waste incineration ash melted slag powder. Fresh mortar properties and strength properties with various municipal solid waste incineration ash melted slag powder replacement ratios were estimated. There replacement ratio adopted in this study was 0, 10, 20, 30, 40, 50%. After then flow properties was considered as properties of fresh mortar. And compressive strength was determined 3, 7, 14, 28, 56 days for the hardened mortar specimens. According to the test results, the flow of mortar was increased with in replacement amount of municipal solid waste incineration ash melted slag powder. Furthermore, compressive strength at early age was decreased, whereas the compressive strength at the age of 28, 56day was increased.

An experimental study on engineering properties of concrete containing fly-ash, slag powder and limestone powder (석회석미분말을 사용한 4성분계 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Hong, Ji-Hoon;Yum, Jun-Haun;Kim, Jung-Bin;Jeong, Yong;Lee, Seong-Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.561-564
    • /
    • 2006
  • This study is aimed for investigating the engineering properties of concrete containing fly ash, slag powder and limestone powder. The results of this study are as follows; As limestone powder is incresed, slump, air loss and strength is reduced, variation ratio of length is reduced, dynamic modulus of elasticity and neutralization depth is incresed.

  • PDF