• Title/Summary/Keyword: Slab structure

Search Result 587, Processing Time 0.026 seconds

Classification of Explosive Demolition Methods Based on the Building Type and Dimension of Wall-slab Apartment Building (벽식 아파트의 주동 형태 및 규모에 따른 발파해체공법 분류)

  • Park, Hoon;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.19-25
    • /
    • 2009
  • According to increasing demands for a redevelopment of a wall-slab structure apartment, new explosive demolition methods, which are different from those for RC structure apartment, are requested. In this study, to provide basic design data on explosive demolition of wall-slab structure apartment, wall-slab structure apartments were classified according to building types and dimensions. Also adequate explosive demolition methods for wall-slab structure apartment are analyzed by using blasting pattern factors such as height(H), breadth(B) and length(L) of apartment.

The Reduction of Structure-borne Noise in an Elevated Station(Changdong Station) of Seoul Metro Line No. $1\sim4$ (서울메트로 $1\sim4$호선 고가역(창동역) 고체소음 저감 사례)

  • Kong, Sun-Yong;Oh, Hee-Wan;Kim, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.438-443
    • /
    • 2007
  • In the recent railway construction, the concrete slab track is highlighted as the maintenance-free track and the main stream is moving from ballasted track to concrete slab track. However, in spite of many merits of concrete slab track, the higher noise generated from the concrete slab track is a troublesome question to solve and, by this reason, many studies on noise reduction of concrete slab track are carried out. The railway noise can be classified into the reflection noise emitted from wheel/rail contact and the structure-borne noise transmitted through railway structures. In this presentation, we would like to introduce an example of the successful reduction of structure-borne noise at track retrofitting to maintenance-free concrete slab track in elevated Changdong Station which was built with ballasted track on Rahmen structure.

  • PDF

Structural Behavior of Composite Slab toNuclear Power Structure under Reversed Cyclic Loads (반복하중을 받는 원자력 구조물 합성 바닥판의 구조적 거동)

  • 김정혁;김강식;김우범;정하선;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.629-634
    • /
    • 2000
  • Comparing with single structure constructed with reinforced concrete or steel, composite structures have a great advantage. However, in case of nuclear power structure, the application of a conventional single structure (reinforced concrete or steel structure) inflicts a heavy loss on a economical and constructive efficiency. But, the application of composite slab to nuclear power structure could compensate these deficiency. Therefore, in this study, the structural behavior of composite slab in nuclear power structure is observed to assure economical and constructive efficiency.

  • PDF

A Study on the Noise and Vibration Reduction Effect Depending on Dynamic Property of Slab (바닥판의 동적특성에 따른 소음진동 저감성능에 관한 연구)

  • 황재승;김선우;송진규;서재란
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.259-266
    • /
    • 2004
  • The vibration of slab causes a sudden change of air pressure in the interface between slab and air to create structure home sound. Floor impact noise induced from the vibration of slab became one of the hottest social issues in these day, and it took the biggest parts of the cause of damage in environmental dispute. Because the structure borne sound of slab is different from the dynamic characteristic of slab, it is required more precise vibroacaustic analysis. In this study, we was trying to understand by what mechanism the slab noise is induced from the slab vibration and the relationship between the dynamic propety of slab and the noise is shown by the numerical simulation.

  • PDF

Wave Propagation Analysis for Pile-Slab Section on High Speed Railway (고속철도 파일슬래브공법 적용구간에서의 파전파해석)

  • Lee, Kang-Myung;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3201-3207
    • /
    • 2011
  • This paper reviewed wave propagation of train vibration based on the study of high speed railway soft ground section with pile slab construction. In a filed of railway, concrete track has been adapted in a railway construction. And in order to maintain its track, soil improving method was required to control residual settlement. Within many soft ground settlement prevention techniques, pile slab method has an effect of minimizing residual settlement of soft ground. This is possible using support embankment load method by construct pile slab or cap the upper soft ground. This paper reviewed vibration wave characteristic of soft ground section with pile slab using numerical analysis application through finite element analysis. Pile slab method is established between high stiffened soft ground and embankment this creates a possibility of vibration block or slab amplification. Thus analyzed of wave propagation was done with roadbed and structure property to confirm application performance of pile slab method of high speed railway structure.

  • PDF

Investigation of Load Transfer Characteristics at Slab Joints In The Floating Slab Track by Equivalent Shear Spring Model (등가 전단 스프링 모델을 이용한 플로팅 슬래브궤도 연결부에서의 하중전달 특성 분석)

  • Jang, Seung-Yup;Ahn, Mi-Kyoung;Choi, Won-Il;Park, Man-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2838-2843
    • /
    • 2011
  • Recently, the floating slab track that can effectively mitigate the vibration and structure-borne noise is being discussed to be adopted. The floating slab track which is a track system isolated from the sub-structure by vibration isolators. Unsimilarly to conventional track and the slab deflection is large. Therefore, the running safety and ride comfort should be investigated. Especially at slab joint since the load cannot be transferred, the possibility that the dynamic behavior of track and train became unstable is high. Thus, in general dowel bar are often installed at slab joints. To determine the appropriate dowel ratio the load transfer characteristics should be investigated. In this study, dowel bar joint is modeled by equivalent shear spring and this model is verified by comparison with experimental results. Using the proven model, the load transfer efficiency and deflection at slab joint according to dowel ratio, and stiffness and spacing of vibration isolator were examined.

  • PDF

Efficient Analysis of Biaxial Hollow Slab (2방향 중공슬래브의 효율적인 해석)

  • Park, Hyun-Jae;Kim, Hyun-Su;Park, Yong-Koo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.362-367
    • /
    • 2008
  • Recently, the use of biaxial hollow slab is increased to reduce noise and vibration of the floor slab. Therefore, an efficient method for the vibration analysis of biaxial hollow slab is required to describe dynamic behavior of biaxial hollow slab. A finite element analysis is one of the method to analyze the biaxial hollow slab. It is necessary to use a refined finite element model for an accurate analysis of a floor slab with an effects of the hollow shape. But it would take a significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Thus the proposed method uses equivalent plate model in this study. Dynamic analyses of an example structure subjected to walking loads were performed to verify the efficiency and accuracy of the proposed method.

  • PDF

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

Vibration Analysis of Station under Railway Lines with Floating Slab Track (플로팅 슬래브궤도를 적용한 선하역사 구조물 진동해석)

  • Jang, Seung-Yup;Cho, Ho-Hyun;Yang, Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1719-1724
    • /
    • 2010
  • In the areas susceptible to vibration and noise induced by railway traffic such as downtown area and stations under railway lines, the vibration and the structure-borne noise can be solved by floating slab track system separating the entire track structure from its sub-structure using anti-vibration mat or springs. In other countries, the core technologies for vibration-proof design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the design technology of system and components are not yet developed, the foreign systems are being introduced without any adjustment. Thus, in this study, the vibration isolator has been developed and its performance are investigated by the dynamic analysis of a station structure under railways lines and the floating slab track system. For this purpose, the loads transferred from the vibration isolator of the floating slab track were evaluated by train running simulation considering vehicle-track interaction, and then the dynamic analysis of station structure subjected to these loads was performed. The dynamic analysis results show that the proposed floating slab track can reduce the vibration of structure by about 25dB compared with that in conventional ballast track without floating system.

  • PDF

Design of Wedge Projection System with Thin Slab Structure

  • Lee, Taewon;Choi, Sungwon;Yang, Yucheol;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.679-684
    • /
    • 2014
  • Enhanced analysis is performed to design a wedge projection system with a slab structure that increases the projected image size. The specification values of the system such as the length of the slab structure and the imaging region are calculated and investigated using an optical simulation tool. We also propose a split imaging region method to represent a large tiled scene using the thin wedge waveguide structure. Experiments are performed to verify the feasibility of the proposed method.