• Title/Summary/Keyword: Slab Form

Search Result 158, Processing Time 0.022 seconds

초고층 주거용 건물 FLAT PLATE SLAB SYSTEM 시공 사례

  • Cho Soon-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.141-147
    • /
    • 2002
  • I-PARK 삼성동 APT PROJECT는 무역센타에서 영동대교 사이의 구릉에 위치한 지상 46층의 주거용 건물로서 3개동 449세대로 구성되었고 각 동을 4세대 조합의 타워형으로 설계되었다. SLAB 구조 방식은 2방향 플랫 프레이트 구조(2WAY FLAT PLATE SLAB SYSTEM)로서 SLAB는 수직하중에 대한 기본적인 지지구조 역할 뿐만 아니라 주 골조 SYSTEM 구성 요소의 일부로서 풍하중 및 지진하중등의 횡력에 대하여 저항할 수 있는 구조로 구성되어 있다. 본 SLAB 구조 SYSTEM을 적용한 국내 최고 높은 건물로서 당 현장에 적용된 시공사례중 가설계획, 고강도 콘크리트, SYSTEM FORM, RE-BAR, 4-DAY CYCLE SCHEDULE 등에 대하여 기술하기로 한다.

  • PDF

The Study of joint structure of composite slabs with the tensile grip connection (고력볼트 인장접을 갖는 합성상판의 이음구조에 관한 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.215-220
    • /
    • 2006
  • Recently, steel-concrete composite slab decks have been widely used as highway bridge decks. In the construction of the composite slab decks, it is necessary to join two adjacent blocked bottom plates to form one unite in the longitudinal direction. In this paper, several types of longitudinal direction joints for Robinson type composite slab decks ared proposed herein and static bending test are carried out by using slab specimens. And the stress and deformation of the tensile grip connection with high strength bolts are discussed by using three-dimensional elastic-plastic FEM.

  • PDF

Heavy-weight Floor Impact Sound Characteristics of Standard Laboratory by Slab Thickness (슬래브 두께에 따른 표준실험동의 중량충격음 특성)

  • Jeong, Young;Song, Hee-Soo;Jeon, Jin-Yong;Kim, Jin-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.103-108
    • /
    • 2004
  • In this study, examined heavy-weight floor impact sound to structure that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results show that the nature Natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Results of measurements of noise and vibration at a standard laboratory, the slab 210, 240mm structures was construed result such as finite element analysis but the slab 150, 180mm structures is construed that influence in vibration acceleration level because edge condition has condition that contact to ground. Therefore, in modelling process for analysis, is thought that need that condition analyzes examining element influencing about structure that contact to ground.

  • PDF

Study on vibration energy characteristics of vehicle-track-viaduct coupling system considering partial contact loss beneath track slab

  • Liu, Linya;Zuo, Zhiyuan;Zhou, Qinyue;Qin, Jialiang;Liu, Quanmin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • CA mortar layer disengagement will give rise to the overall structural changes of the track and variation in the vibration form of the ballastless track. By establishing a vehicle-track-viaduct coupling analysis and calculation model, it is possible to analyze the CRTS-I type track structure vibration response while the track slab is disengaging with the power flow evaluation method, to compare the two disengaging types, namely partial contact loss at one edge beneath track slab and partial contact loss at midpoint beneath track slab. It can also study how the length of disengaging influences the track structures vibration power. It is showed that when the partial contact loss beneath track slab, and the relative vibration energy level between the rail and the track slab increases significantly within [10, 200]Hz with the same disengaging length, the partial contact loss at one edge beneath track slab has more prominent influence on the vibration power than the partial contact loss at midpoint beneath track slab. With the increase of disengaging length, the relative vibration energy level of the track slab grows sharply, but it will change significantly when it reaches 1.56 m. Little effect will be caused by the relative vibration energy level of the viaduct. The partial contact loss beneath the track slab will cause more power distribution and transmission between the trail and track slab, and will then affect the service life of the rail and track slab.

Requirement Analysis of the System Form for the Bridge Slab (교량 상판(바닥판) 콘크리트 타설용 시스템 거푸집 개발을 위한 요구조건 분석)

  • Kim, Taekoo;Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.195-196
    • /
    • 2014
  • Unlike general construction works, bridge construction is mostly done in a high place. The conventional deck form of bridge is installed between precast concrete girders using sleepers, bridging joints and plywoods, and after concrete is poured to the deck, the form materials are removed at high altitudes. When removing the form, it may be dropped on ground, damaging the materials and resulting in economic loss. In addition, safety accidents are likely as the works are performed in a high place, and as the manpower increases, the cost increases. Also, it is difficult to install and remove temporary equipment. Therefore, it is required to develop a system form that allows easier and quicker installation and removal by unskilled workers and ensures safety of workers. In this regard, the study is intended to analyze requirements for the system form for pouring concrete to bridge decks, which can be easily installed and removed. The study result will be used as basic information for development of the system form for pouring concrete to bridge decks.

  • PDF

Construction Method and Control System of the Heat of Hydration for Inchon International Airport Elevated Road Way (인천국제공항 여객터미널 전면 고가 교량 공사 시공방법 및 수화열 대책)

  • 임채만;박명웅;조용기;조선규;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.869-881
    • /
    • 1999
  • Inchon International Airport Elevated Road Way is located between the Passenger Terminal Building and Transportaion Center which are Inchon International Airport core construction projects. The deck of the bridge is consists of 5-span or 6-span continuous pre-stressed concrete slab. Steel form has been used to enhance the quality of texture on concrete slab. Steel form has been used to enhance the quality of texture on concrete surface, lower surface of deck slab with the two way arch has been manufactured by highly professional manner in order to get an beautiful exterior architectural looks. The prestressed concrete deck slab is mass concrete structures with a high-specified concrete strength and a varying section in the range of 0.95-2.8m thickness. Therefore high risks of thermal cracking occurrence by heat of hydration highly are expected. To resolve such problem, we adopted type 1 cement and pipe cooking method at construction site through mass concrete specimen test and 3-dimensional analysis. For Pipe cooling we used 25mm diameter stainless pipes with wrinkles. Cooling pipe with spacing 50-60cm has been installed. And continuous pipe cooling with cooling water of 15$^{\circ}C$ was conducted for 2days. In present 8 span of all 29 spans construction has been completed. No thermal cracking heat hydration has been observed yet.

  • PDF

An experimental evaluation of hardened property of concrete using early-strength-binder with curing temperature (조강형 결합재를 사용한 콘크리트의 양생온도에 따른 경화특성 실험적 평가)

  • Kim, Kwang-Ki;Kim, Young-sun;Lee, Joo-ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.88-89
    • /
    • 2015
  • In cold weather, the speed of concrete strength development is slow. As a result, construction speed becomes slow and it is problem for all construction site to solve this. So in this study, to shorten removing frame time after placing concrete, mix proportion using early-strength-binder(ESB) and curing method such as using heat line in concrete was considered. At first, concrete mix proportion was examined at -5℃ temperature between ordinary portland cement(OPC) and ESB. And second step, concrete, using mix proportion with OPC, was examined according to curing method(: 1) heat line used and 2) no heat line) and kinds of form (: 1) Deck slab, 2) Half PC slab and 3) SOG slab). All cases are same condition: slab thickness is 1,500mm, double-bubble sheet is used as a curing sheet after placing concrete. After the test, OPC is enough to get strength compared to ESB in special condition and 48~60 hours is needed according to form condition.

  • PDF

The bearing capacity of monolithic composite beams with laminated slab throughout fire process

  • Lyu, Junli;Zhou, Shengnan;Chen, Qichao;Wang, Yong
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • To investigate the failure form, bending stiffness, and residual bearing capacity of monolithic composite beams with laminated slab throughout the fire process, fire tests of four monolithic composite beams with laminated slab were performed under constant load and temperature increase. Different factors such as post-pouring layer thickness, lap length of the prefabricated bottom slab, and stud spacing were considered in the fire test. The test results demonstrate that, under the same fire time and external load, the post-pouring layer thickness and stud spacing are important parameters that affect the fire resistance of monolithic composite beams with laminated slab. Similarly, the post-pouring layer thickness and stud spacing are the predominant factors affecting the bending stiffness of monolithic composite beams with laminated slab after fire exposure. The failure forms of monolithic composite beams with laminated slab after the fire are approximately the same as those at room temperature. In both cases, the beams underwent bending failure. However, after exposure to the high-temperature fire, cracks appeared earlier in the monolithic composite beams with laminated slab, and both the residual bearing capacity and bending stiffness were reduced by varying degrees. In this test, the bending bearing capacity and ductility of monolithic composite beams with laminated slab after fire exposure were reduced by 23.3% and 55.4%, respectively, compared with those tested at room temperature. Calculation methods for the residual bearing capacity and bending stiffness of monolithic composite beams with laminated slab in and after the fire are proposed, which demonstrated good accuracy.

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF

Development of the Purlin Hanging System Form for the Girder Bridge Slab and Economic Analysis (거더교 상판 콘크리트 타설용 거푸집 개발 및 경제성 분석)

  • Lim, Jeeyoung;Kim, Sunkuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.271-278
    • /
    • 2016
  • In the case of South Korea, steel girder bridge (steel box or H-steel) and PSC (Pre-Stressed Concrete) girder bridge are the representative upper structures of railroad and road bridges. These structures account for 75% of the total bridge constructions and 80% of the total construction cost. Since the form work for concreting bridge slab is difficult, various construction methods developed and applied. However, several problems in those methods did not solve partially, including cost increase by material loss and rise of labor costs, quality deterioration by unskilled workers, increased construction time by complicated method, reduced productivity, safety accident by high place work, difficult transportation by big member, and rise of maintenance cost by material characteristic. Alternative method is needed to solve problems of as-is methods. Therefore, the purpose of this study is development of the purlin hanging system form for the girder bridge slab and its economic analysis. Through the findings of this study, it was verified that the purlin hanging system form is possible 60% reduction in cost and 80% reduction in time as comparison with conventional method.