• Title/Summary/Keyword: Sky-hook Algorithm

Search Result 24, Processing Time 0.022 seconds

Vibration Control of a Tracked Vehicle with ER Suspension Units (II);Modeling and Control of a Tracked Vehicle (ER 현수장치를 갖는 궤도 차량의 진동제어 (II);궤도차량의 모델링 및 제어)

  • Park, Dong-Won;Choe, Seung-Bok;Gang, Yun-Su;Seo, Mun-Seok;Sin, Min-Jae;Choe, Gyo-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1960-1969
    • /
    • 1999
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double rod type ERSU(electro-rheological suspension unit). A 16 degree-of-freedom model for the tracked vehicle is established by Lagrangian method followed by the formulation of a new sky-ground hook controller. This controller takes account for both the ride quality and the steering stability. The weighting parameter between the two performance requirements is adopted to adjust required performance characteristics with respect to the operation conditions such as road excitation. The parameter is appropriately determined by employing a fuzzy algorithm associated with the vehicle motion. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control system. Acceleration values at the driver's seat are analyzed under bump road profile, while frequency responses of vertical acceleration are investigated under random road excitation.

A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network (진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계)

  • Kim, Dae-Jun;Chun, Jong-Min;Jeon, Hyang-Sig;Park, Young-Kiu;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

Fuzzy Sky-hook Control of Semi-active Suspension System Using Rotary MR Damper (회전형 MR 댐퍼를 이용한 반능동 현가장치의 퍼지 스카이-훅 제어)

  • Cho, Jeong-Mok;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.701-706
    • /
    • 2007
  • Recently, a number of researches about linear magnetorheological(MR) damper using valve-mode characteristics of MR fluid have sufficiently undertaken, but researches about rotary MR damper using shear-mode characteristics of MR fluid are not enough. In this paper, we performed vibration control of shear-mode MR damper for unlimited rotating actuator of mobile robot. Also fuzzy logic based vibration control for shear-mode MR damper is suggested. The parameters, like scaling factor of input/output and center of the triangular membership functions associated with the different linguistic variables, are tuned by genetic algorithm. Simulation results demonstrate the effectiveness of the fuzzy-skyhook controller for vibration control of shear-mode MR damper under impact force.

Control Algorithms of Active Suspension Systems for Ride Comfort Improvement (승차감 향상을 위한 액티브서스펜션의 제어알고리즘)

  • Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.61-67
    • /
    • 1992
  • Two control algorithms of active suspension system for improving ride quality are described and their effectiveness is assessed using a quarter car model. Optimal control approach demonstrates great flexibility to meet various running conditions of a vehicle. However, in order to fully utilize the power of optimal control apporach, accurate estimation of the state variables is essential. Simple, yet effective sky-hook algorithm seems to be well suited for real application because of its much relaxed requirements on sensing the stste variables and relative easiness to implment.

  • PDF

Development of Dynamic Modeling and Control Algorithm for Lateral Vibration HILS of Railway Vehicle (철도 차량 횡진동 HILS 를 위한 동적 모델링 및 제어 알고리즘 개발)

  • Lee, Jae-Ha;Kwak, Moon-K.;Yang, Dong-Ho;You, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.713-719
    • /
    • 2012
  • This paper is concerned with the dynamic modeling for the hardware-in-the-loop simulation of lateral vibrations of a railway vehicle. The resulting dynamic model is a nine degree-of-freedom model which can describe the lateral, roll and yaw motions of the car body and two bogies. It is assumed that the external disturbances come from wheel motions. In order to test the efficacy of the model, the linear quadratic regulator and the sky-hook control algorithm were designed and applied to the model. The simulation results show that both control algorithms are effective in suppressing the vibrations of railway vehicles.

  • PDF

Development of Dynamic Modeling and Control Algorithm for Lateral Vibration HILS of Railway Vehicle (철도 차량 횡진동 HILS를 위한 동적 모델링 및 제어 알고리즘 개발)

  • Lee, Jae-Ha;Kwak, Moon-K.;Yang, Dong-Ho;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.634-641
    • /
    • 2012
  • This paper is concerned with the dynamic modeling for the hardware-in-the-loop simulation of lateral vibrations of a railway vehicle. The resulting dynamic model is a nine degree-of-freedom model which can describe the lateral, roll and yaw motions of the car body and two bogies. It is assumed that the external disturbances come from wheel motions. In order to test the efficacy of the model, the linear quadratic regulator and the sky-hook control algorithm were designed and applied to the model. The simulation results show that both control algorithms are effective in suppressing the vibrations of railway vehicles.

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

OPTIMAL PREVIEW CONTROL OF TRACKED VEHICLE SUSPENSION SYSTEMS

  • Youn, I.;Lee, S.;Tomizuka, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.469-475
    • /
    • 2006
  • In this paper, an optimal suspension system with preview of the road input is synthesized for a half tracked vehicle. The main goal of this research is to improve the ride comfort characteristics of a fast moving tracked vehicle in order to maintain the driver's driving capability. Several different kinds of preview control algorithms are evaluated with active or semi-active suspension systems. The road information estimated from the motion of the 1st road-wheel is adequate to make the best use of the preview control algorithm for tracked vehicles. The ride-comfort characteristics of the tracked vehicle are more dependent on pitching angular acceleration than heaving acceleration. The pitching motion is reduced by the suspension system with hard outer suspensions and soft inner suspensions. Simulation results show that the performance of sky-hook algorithms for ride comfort nearly follow that of full state feedback algorithms.

1/4 Car Vibration Simulation Using An Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4차량 진동 시뮬레이션)

  • Baek, Woon-Kyung;Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.638-643
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was dong using a quarter car simulator to confirm the simulation results with the Spencer MR damper model

  • PDF

1/4 Car Vibration Simulation Using an Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션)

  • Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won;Baek, Woon-Kyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.