• Title/Summary/Keyword: Sky view factor (SVF)

Search Result 11, Processing Time 0.028 seconds

Analysis of Sky-View-Factor based Dilution of Precision for Evaluation of GNSS Performance in Land Road Environment (육상교통환경 위성항법 성능 예측을 위한 Sky-View-Factor 기반 Dilution of Precision 분석)

  • Hong, Woon-Ki;Choi, Kwang-Sik;Lee, Eun-Sung;Im, Sung-Hyuck;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.944-951
    • /
    • 2012
  • The conventional indexes for describing the GNSS positioning performance such as satellite visibility, dilution of precision (DOP) and signal to noise ratio is very useful in open sky, however, they are not useful in the land road environment. In this paper new index is suggested for describing the GNSS positioning performance for the road environment. The new index is called Sky View based DOP (SVDOP). SVDOP is derived referring the Sky-View-Factor (SVF). The usefulness is analyzed by comparing the SVDOP and SVF in land road environment after the singularity points are selected and SVDOP is calculated.

A Study on a Comparison of Sky View Factors and a Correlation with Air Temperature in the City (하늘시계지수 비교 및 도시기온 상관성 연구: 강남 선정릉지역을 중심으로)

  • Yi, Chaeyeon;Shin, Yire;An, Seung Man
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Sky view factor can quantify the influence of complex obstructions. This study aims to evaluate the best available SVF method that represents an urban thermal condition with land cover in complex city of Korea and also to quantify a correlation between SVF and mean air temperature; the results are as follows. First, three SVF methods comparison result shows that urban thermal study should consider forest canopy induced effects because the forest canopy test (on/off) on SVF reveals significant difference range (0.8, between maximum value and minimum value) in comparison with the range (0.1~0.3) of SVFs (Fisheye, SOLWEIG and 3DPC) difference. The significance is bigger as a forest cover proportion become larger. Second, R-square between SVF methods and urban local mean air temperature seems more reliable at night than a day. And as the value of SVF increased, it showed a positive slope in summer day and a negative slope in winter night. In the SVF calculation method, Fisheye SVF, which is the observed value, is close to the 3DPC SVF, but the grid-based SWG SVF is higher in correlation with the temperature. However, both urban climate monitoring and model/analysis study need more development because of the different between SVF and mean air temperature correlation results in the summer night period, which imply other major factors such as cooling air by the forest canopy, warming air by anthropogenic heat emitted from fuel oil combustion and so forth.

An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model (수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.119-134
    • /
    • 2019
  • In order to analyze the observational environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we used the digital elevation model (DEM) and the solar radiation model to calculate a topographical shading, sky view factor (SVF) and solar radiation by surrounding terrain. The sky line and SVF were calculated using high resolution DEM around 25 km of the solar stations. We analyzed the topographic effect by analyzing overlapped solar map with sky line. Particularly, Incheon station has low SVF whereas Cheongsong and Chupungryong station have high SVF. In order to validation the contribution of topographic effect, the solar radiation calculated using GWNU solar radiation model according to the sky line and SVF under the same meteorological conditions. As a result, direct, diffuse and global solar radiation were decreased by 12.0, 5.6, and 4.7% compared to plane surface on Cheongsong station. The 6 stations were decreased amount of mean daily solar radiation to the annual solar radiation. Among 42 stations, eight stations were analyzed as the urgent transfer stations or moving equipment quickly and more than half of stations (24) were required to review the observational environment. Since the DEM data do not include artifacts and vegetation around the station, the stations need a detail survey of observational environment.

Effects of Physical environmental factors on Radiation fluxes in Urban areas (도시지역의 물리적 환경요소가 복사에너지 흐름에 미치는 영향)

  • Song, Bonggeun;Park, Kyunghun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.477-491
    • /
    • 2014
  • The purpose of this study is to develop urban planning for mitigating thermal comfort by analyzing the relationship between various physical environmental factors and radiation fluxes focused on urban areas of Changwon city, Gyeongsangnam-do. Physical environmental factors were analyzed by sky view factor (SVF), land cover and land use types using GIS program. Radiation fluxes were measured upward and downward in solar and terrestrial radiation by mobile measurement during 3 days (2 daytime and 1 nighttime) in summer season. SVF is high in urban park less around buildings. High dense building sites were low. Downward solar radiation fluxes were the highest about $700W/m^2$ at daytime, and decreased in spatial type arranged dense buildings. Upward solar and terrestrial radiations was affected by land cover types that have thermal features such as reflectivity, emissivity, and heat capacity. Therefore, urban space needs appropriate planning with building arrangement, green walls and land cover replacement for mitigating thermal comfort in urban area.

An Analysis of Radiative Observation Environment for Korea Meteorological Administration (KMA) Solar Radiation Stations based on 3-Dimensional Camera and Digital Elevation Model (DEM) (3차원 카메라와 수치표고모델 자료에 따른 기상청 일사관측소의 복사관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Jo, Ji-Young
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.537-550
    • /
    • 2019
  • To analyze the observation environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we analyzed the skyline, Sky View Factor (SVF), and solar radiation due to the surrounding topography and artificial structures using a Digital Elevation Model (DEM), 3D camera, and solar radiation model. Solar energy shielding of 25 km around the station was analyzed using 10 m resolution DEM data and the skyline elevation and SVF were analyzed by the surrounding environment using the image captured by the 3D camera. The solar radiation model was used to assess the contribution of the environment to solar radiation. Because the skyline elevation retrieved from the DEM is different from the actual environment, it is compared with the results obtained from the 3D camera. From the skyline and SVF calculations, it was observed that some stations were shielded by the surrounding environment at sunrise and sunset. The topographic effect of 3D camera is therefore more than 20 times higher than that of DEM throughout the year for monthly accumulated solar radiation. Due to relatively low solar radiation in winter, the solar radiation shielding is large in winter. Also, for the annual accumulated solar radiation, the difference of the global solar radiation calculated using the 3D camera was 176.70 MJ (solar radiation with 7 days; suppose daily accumulated solar radiation 26 MJ) on an average and a maximum of 439.90 MJ (solar radiation with 17.5 days).

The Relationship between Temperature Patterns and Urban Morfometri in the Jakarta City, Indonesia

  • Maru, Rosmini;Ahmad, Shaharuddin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.128-136
    • /
    • 2015
  • Sky View Factor (SVF) is one of the urban morfometri parameters that impact on the Urban Heat Island (UHI). SVF analisys was conducted in the city of Jakarta to investigate the relationship between urban temperature with urban morfometri. Jakarta City is the most populous city in the world that has a surrounding area $66,152km^2$ and the total population around 23 million people. The population of the city is the sixth highest in the world today. SVF measurements done by taking pictures at the six stations that have different morphological characteristics namely (1) the narrow streets Apartment Cempaka Mas (JS ITC), (2) the width of the road Apartment Cempaka Mas (JL ITC), (3) in front of Colleges Kanisius (DKK), (4) in front of office Journalist of Indonesia (DKWI), (5) Utan Kayu (UK), and (6) Tambun (TB). SVF value is obtained from the photgraphic image. Taking pictures at the location using a Nikon D90 camera with a Nikon Fisheye Nikkor 10.5 mm 1 : 2.8 G ED, further processed through a global mapper program. Therefore, the SVF derived from the six stations that vary 0.21 to 0.78. Temperature measurement is done during daylight hours from 06:00 am to 18:00 pm during the Western Part of Indonesia (WIB). Measurements performed at three different times, namely working days (HK) regular holidays (HCB) national holidays (HCN). The results showed that the highest average temperature of $33.32^{\circ}C$, occurring at UK station (SVF=0.45) at the time of HCB. Meanwhile, the average low temperature of $31.22^{\circ}C$ occurred at JLITC station (SVF=0.42). The two-time occurred on ordinary holidays. Maximum temperature of $38.4^{\circ}C$ occurred in Utan Kayu station (SFV=0.45) that occurred at 11.00 hrs, normal holidays. Furthermore minimum temperature 24.5 occurred at Tambun station (SVF=0.78) at 06.00 hrs in the morning at the usual holidays and national holidays. In general, the results showed that areas with large SVF has a lower temperature compared with areas with smaller SVF. Though, are not the only factors that matter, but this research may show that an increase in temperature in the city of Jakarta. Therefore, it is necessary to mitigate the serious from the government or society.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Observation and Analysis of Long and Short-wave Radiation According to Types of Summer Shelters (하계 그늘쉼터 유형별 장·단파복사 관측과 해석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.127-135
    • /
    • 2019
  • In this study, we analyzed the relationship between five factors: long-wave radiation, short-wave radiation, cloudiness, SVF and summer shelters. In the previous study, we recognized the correlation between single building SVF and long-wave radiation. Furthermore, this study attempted to confirm the relationship at the summer shelter with high solar radiation blocking rate. The observations are as follows. ① Cooling in summer shelters was not the effect of temperature but the effect of radiation reduction due to short-wave radiation shielding. ② In the case of the canopy tent with low heat capacity, the long-wave radiation was observed to be 16.7% higher per hour than the comparison control point due to the increase in surface temperature. ③ The long-wave radiation increase rate was different according to SVF, but showed very similar pattern according to the material characteristics of the summer shelters. ④ Passive Cooling effect on the type of summer shelters are determined by the size of the total long and short-wave radiation at that point.

Air Temperature Differences in Areas with High-rise Buildings (초고층빌딩지역의 기온차)

  • Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2012
  • In Seoul, skyscrapers are built in commercial zones known as residential-commercial complexes, which cause such environmental problems as urban heat islands(UHI) and air pollution. To investigate air temperature differences in areas near skyscrapers at Gangnam-gu, Seoul, South Korea, fixed air temperature observation and traverse observations were performed from March 16, 2008 to March 15, 2009. The annual mean air temperature at Tower Palace(TPL) was higher than that at Sookmyung Girls' High School(SMG) by $0.7^{\circ}C$, although the distance between the two observation positions is only 200m. The number of tropical nights at TPL was 13, while that at SMG was 5. The higher air temperature at TPL was due to a significantly lower sky view factor(SVF), which prevented long-wave radiation from emitting into the sky. The highest air temperature increases near TPL occurred on summer nights because of the high-electricity consumption value of $70.22Wh/m^2$ for the TPL block in August due to air conditioning for cooling. It is concluded that the warm air pocket centered on TPL.

Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature (도시의 3차원 물리적 환경변수와 지표온도의 관계 분석)

  • Li, Yige;Lee, Sugie;Han, Jaewon
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • This study examines the relationship between three-dimensional urban built environment and urban surface temperature using LANDSAT 8 satellite image data in Seoul city. The image was divided into 600m×600m grid units as an unit of analysis. Due to the high level of spatial dependency in surface temperature, this study uses spatial statistics to take into account spatial auto-correlation. The spatial error model shows the best goodness of fit. The analysis results show that the three-dimensional built environment and transport environment as well as natural environment have statistically significant associations with surface temperature. First, natural environment variables such as green space, streams and river, and average elevation show statistically significant negative association with surface temperature. Second, the building area shows a positive association with surface temperature. In addition, while sky view factor (SVF) has a positive association with surface temperature, surface roughness (SR) shows a negative association with it. Third, transportation related variables such as road density, railway density, and traffic volume show positive associations with surface temperature. Moreover, this study finds that SVF and SR have different effects on surface temperature in regard to the levels of total floor areas in built environment. The results indicate that interactions between floor area ratio (FAR) and three-dimensional built environmental variables such as SVF and SR should be considered to reduce urban surface temperature.