• Title/Summary/Keyword: Skin temperatures

Search Result 240, Processing Time 0.019 seconds

Differences in Skin Temperature and Perceived Thermal Comfort Based on Age, Sex and Clothing Weight of Participants in a Room at Recommended Room Temperature (겨울철 실내 온도에서 연령과 성에 따른 피부 온도와 열쾌적감)

  • 김명주
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2004
  • The purpose of this study was to examine the differences in skin temperature and thermal comfort of participants in a $19^\circ{C}$ room (the recommended room temperature in the winter) depending on age, sex and clothing weight. Subjects were divided into four groups (6 young males, 5 young females, 6 old males, 6 old females) and experimental trials consisted of three conditions: wearing underwear in a $19^\circ{C}$ room (19CUW), without underwear in a $19^\circ{C}$ room (19C), and without underwear in a $24^\circ{C}$ room (24C). The results indicated the following: 1) There were no significant differences in mean skin temperature based on age or sex, and the mean skin temperatures of the four groups were in the range of 32.4∼$34.0^\circ{C}$. 2) In the 19C condition, the skin temperatures of the hands and feet of old females were higher than those of the other three groups. 3) In terms of perceived thermal comfort, young females showed a tendency to feel the most uncomfortable. Both old and young groups agreed that the 24C condition was the most comfortable. 4) Relational coefficients between thermal comfort and skin temperatures were higher in the young group than in the old group. Furthermore, the perceived thermal comfort had a stronger relationship with mean skin temperatures than with local skin temperatures. 5) The mean skin temperatures of subjects who indicated they were 'comfortable' were in the range of 31∼$36^\circ{C}$ regardless of age or sex.

  • PDF

Thermoregulation on Menstrual Cycle -Effects of Ambient Temperatures- (생리주기에 따른 체온조절에 관한 연구 -환경온도의 영향을 중심으로-)

  • 황수경;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.2
    • /
    • pp.339-349
    • /
    • 2001
  • This study was investigated the effects of ambient temperatures and menstrual cycle on Resting Metabolic Rate(RMR), Rectal Temperature(Tre), Skin(forehead, chest, abdomen, forearm, hand, thigh, leg, foot) Temperatures, and subjective thermal sensations in 8 young Korean females(ages 22-25, voluntarily). The Tre and the Skin Temperatures were measured in once every five minute for one hour. RMR was measured three times at 30 minutes intervals by indirect calorimetry. All measurements were gathered during Luteal Phase(LP), Menstruation(M), and Follicular Phase(FP) at two levels of ambient temperatures; low(17~21$^{\circ}C$) and middle(21.1~$25^{\circ}C$). LP were the highest values during FP and M in RMR, Tre, forehead temperature, chest temperature and abdomen temperature, while the leg(leg and foot) and arm(forearm and hand) temperatures were higher during FP rather than during LP at each ambient temperature. The downward curve of Tre in the experiment was larger during FP than LP. The values in subjective thermal sensations were most comfortable during LP than M and FP at each ambient temperature. The LP-FP differences in core and mean skin temperatures, and resting metabolic rate, were more significant at middle ambient temperatures than at low ambient temperatures.

  • PDF

Effects of Covering Parts of Body with Garments on Human Thermoregulation and Sensation (신체의 부위별 피복이 체온조절 및 주곤적인 감각에 미치는 영향(I))

  • 이종민;이순원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.2
    • /
    • pp.273-282
    • /
    • 1994
  • The physiological significances of the upper and lower body on thermoregulation and sensation were studied in this paper. Experiments were carried out on 4 females in a climatic chamber conditioned at 1) $25^{\circ}C\rightarrow35^{\circ}C\rightarrow25^{\circ}C$, 2) $25^{\circ}C\rightarrow15^{\circ}C\rightarrow25^{\circ}C$, both with 50% R.H., covering the upper body (U) or lower body (L) with garments. 1. When the upper or lower body is covered or exposured respectively, the mean skin tempterature of upper body is higher than that of lower body. And upper body is more easily influenced by the environmental temperature than lower body. It means the skin temperatures of the upper body change faster than those of the lower body following the environmental changes. 2. In U and L, the skin temperatures of the upper limbs (thighs, upper arms) are lower than those of the peripherals (hands, feet). 3. Warm sensations and skin temperatures of the upper body showed high correlation and it was the case with cold sensations and skin temperatures of the lower body. 4. In high temperature condition $(25^{\circ}C\rightarrow35^{\circ}C\rightarrow25^{\circ}C)$, mean skill temperature and rectal temperature in L were lower than in U. This lower rectal temperature in L is probably due to the insulation of the lower body with garments that promotes the heat radiation only in the high temperature environment.

  • PDF

Physiological Responses and Subjective Sensation of Human Body Wearing OnMapsi in Heating Environment (난방환경에서 온(溫)맵시 착용에 따른 생리적 반응 및 주관적 감각)

  • Na, Young-Joo;Lee, Ji-Yun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • This study tests the performance of the recommended winter dress OnMapsi for an office worker through the analysis of skin temperature changes according to the heating environment. We tested and compared the effects of with/without undergarments for 4 male subjects in an artificial-climate chamber with two air temperatures of $19^{\circ}C$ and $22^{\circ}C$, $50{\pm}10%$ R.H. During the 60 minute experiment that simulated office work, the subjective feelings (that included thermal, humidity and comfort sensation, and skin temperature) were measured at equal intervals. The results show that the forehead and chest skin temperatures were not affected by air temperature or clothing type, while the hand and foot skin temperatures were affected at $0.3-0.9^{\circ}C$ depending on clothing type and $1.9-2.2^{\circ}C$ depending on air temperature. The mean skin temperature was decreased by the experimental time pass more with regular formal wear than with OnMapsi. The second experiment located the ambient temperature in which subjects wearing OnMapsi show equal skin temperaturesto those without undergarments at $22^{\circ}C$. Therefore it is possible to decrease heating temperatures to $18-21^{\circ}C$ in the office for winter OnMapsi wear that produces a skin temperature and thermal sensation that is the same as those at $22^{\circ}C$.

Evaluation of Thermal Comfort in Ceiling Cooling System (천장복사냉방의 온열쾌적성 평가에 관한 연구)

  • Lee, Ju-Youn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • The purpose of this study was to clarify the effects of air and ceiling temperatures on a type of ceiling cooling system that involves cool water circulation. The experiment is conducted in summer. The subjects (11 young females) are exposed to the following conditions: combinations of air temperatures $(27^{\circ}C,\;29^{\circ}C,\;31^{\circ}C)$ and ceiling temperature of $(22.7^{\circ}C,\;23.7^{\circ}C,\;24.7^{\circ}C)$ in still air and RH 50%. The following results were obtained; the thermal sensation vote is neutral at a mean skin temperature of $34.5^{\circ}C$. The ceiling temperature affected different parts of the body. For example, the forehead, scapula and abdomen produced different skin temperatures. Thermal comfort vote was rated as comfortable at high temperature environment. The satisfaction from the ceiling temperature was valued comfortable zone in this experiment. Mean skin temperature showing higher thermal neutrality temperature than existing studies for floor and wall radiation cooling results.

Differences in Body Temperatures according to Three Methods of cold Application (냉적용 방법에 따른 심부 및 피부온도변화)

  • 임난영;김진경
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.2
    • /
    • pp.157-169
    • /
    • 1993
  • The most effective modality for cold application and the length of the application have not been determined despite many studies about the use of cold. A quasi-experimental study was conducted to examine the most effective modality among three methods of cold application, the most effective length of time for the application and the continuing effect after each type of cold application. Thirty adult patients admitted to medical and neurosurgical unit and with high fever (above 38.2 ℃) were assigned randomly to each of three cold ap-plication methods : (a) ice bag: (b) cold compress; and (c) tepid water sponge bath. Each method was applied to the whole anterior surface except the face and neck with the patient in the supine pos-ition. Rectal temperatures and skin temperatures (mid chest, upper arm, thigh and leg) were measured be-fore each application and every 10 minutes during ,each application for a period of 60 minutes. They were also measured every 10 minutes for 30 minutes after each cold application was finished. The experiments were carried out from Dec. 22. 1992 through Feb. 26, 1993. The data were analysed using means, ANCOVA Sheffe test and Pearson's Correlation Coefficient. The results of this study are as follows : 1. There were no significant differences among the three cold application methods in the reduction of body temperature, 2. Among the ice bag, cold compress and tepid water sponge bath groups, the ice bag proved to be the most effective method for lowering skin temperature while the cold compress was least effective. 3. Both rectal and skin temperature continued to decrease during the 60 minutes of cold application, but the hunting phenomena was not observed at any of the cold application sites. 4. There were no significant correlations between mean rectal and skin temperatures. 5. Skin temperatures according to the cold application sites decreased to a range of 3.46℃ to 5.20℃ (mid chest), a range of 4.48℃ 4.96℃ (upper arm), a range of 3.86℃ to 5.05℃ (thigh), and a range of 5.42℃ -7.12℃ (leg ). 6. In continuing effect after the cold applications were finished, rectal temperatures according to ice bag, cold compress and tepid sponge bath decreased to 0.29℃, 0.23℃ and 0.09℃ respectively, while the mean skin temperatures increased to 2.39℃ , 2.04℃ and 2.22℃ respectively. In this experiment the ice bag was the most effective modality for lowering skin temperature. when-ever cold is applied for systemic effect, the continuing effect of cold should be considered. The determination of the most effective length of time for cold application needs further study.

  • PDF

A comparision study on the variation of skin temperature on the adult male. female at environmental temperature (각 환경기온하에서의 성인 남녀의 피부온 비교)

  • 심부자
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.39-59
    • /
    • 1997
  • With a view to providing basic data for designing male's and female's clothes, healthy males and females(five each) were exposed to three different environmental temperature($20{\pm}1.0^{\circ}C$, $28{\pm}1.0^{\circ}C$, $32{\pm}1.0^{\circ}C$) in the nude. Their adaptation of skin temperature, physiological responses( rectal temperature, blood pressure, pulse rates) and psychological reactions(thermal, comfort and perceptive sweaty sensations) were analyzed as follows; The subjects's skin temperature had a similar look of adaptation, but the stability of skin temperature differed at tha $20{\pm}1.0^{\circ}C$ and at the $28{\pm}1.0^{\circ}C$ Males had higher skin temperature at three environmental temperatures, but females showed a higher temperature change at the $20{\pm}1.0^{\circ}C$ and $28{\pm}1.0^{\circ}C$ and males at the$32{\pm}1.0^{\circ}C$ Thus females were more resistant to the cold, while males were more resistant to the heat. As environmental temperature increased, rectal temperature and pulse rates also grew up. Females turned higher in rectal temperature and lower in blood pressure, but both sexes had a normal range of physiological reactions. Even though three environmental temperatures were same changes in thermal sensation at $28{\pm}1.0^{\circ}C$and in perceptive sweat sensation at $32{\pm}1.0^{\circ}C$, two sexes had the same response in comfort sensation at the three environmental temperatures.

  • PDF

A study on KIMI-Theory (I) - The relationship between 'KI' and changes in body temperature - (기미론의 연구(I) - 부제 : 체온과 사기의 관계 -)

  • Lee, Han-Goo;Lee, Mi-Young;Lee, Je-Hyun
    • Korean Journal of Oriental Medicine
    • /
    • v.1 no.1
    • /
    • pp.419-431
    • /
    • 1995
  • The common KIMI-Theory of Oriental medicine has evaluated clinical effects of herbal-drug based on KI, nature of berbs, and tastes. The KI in the theory consists of hotness, warm, cool and coldnes and also the Mi does five tastes such as sour, bitterness, sweet, spicy hotness and saltiness. However the KI does not mean thermal effect only. Thus we tried to determine skin and rectal temperatures at the same time for evaluating the relationship between KI and berbs. Male, adult Sprage-Dawly rat was chosen and berbal extract, 10g/Kg, was given orally once at 9:00 A.M. changes in rectal and skin temperatures were measured at 10, 30, 60, and 90 mins after the drug administratin. The changes in body temperatures are in greate deal of agreement of KI written in Herbology literatures.

  • PDF

Monthly Changes of Skin Temperature in Koreans by Sexes and Ages (성별, 연령별로 본 한국인의 월별 피부온)

  • 김명주;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.2
    • /
    • pp.314-324
    • /
    • 1997
  • The purpose of this study was to evaluate the thermoregulatory response level on the heat and cold tolerance with investigating monthly changes of skin temperature in Koreans and to obtain the basal information for standard amount of clothing weight, indoor climate and working condition. Forty eight subjects in 5 age groups (6~11, 12~19, 20~44, 45~64, 65~76 years old) with both sexs were taken from Seoul and Kyunggi probince. All subjects were measured skin temperature, mean skin temperature, Total clothing weight in neutral condition in each month from June 1994 to May 1995. The results obtained are summarized as follows: 1. Skin temperature of all subjects was low on February, March and April, and was high on June, July and August. Temperatures of the torso (forehead and abdomen) and the lower limbs (leg and foot) were remarkably different. In general, most of skin temperatures except of hand, thigh and foot were higher in males. 2. Mean skin temperature was 0.5'c higher in males than female with ranging 32.5~34.5$^{\circ}C$ in males and 32.1~34.1$^{\circ}C$ in females. Also, mean skin temperature of 6~11 age group were higher than that of 45~ 64 age group in both sexs.

  • PDF

Effects of Exposed Parts of Body with Garments on Human Thermoregulatory Responses to Cold Environments (추운 환경에서 노출된 부위에 따른 체온조절 반응에 대한 연구)

  • 성유진;이순원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.6
    • /
    • pp.977-987
    • /
    • 1997
  • The present study was designed to see what the local cooling of different body regions especially head and neck, hands and feet effect physiological responses in cold environment. Four male subjects wore garments covering whole body except face and rested for 20 min and then they rested for 40 min with uncovered head, neck, hands and feet, respectively in a cold environment(10$\pm$1$^{\circ}C$, 50$\pm$5%R.H.) 1. Rectal temperature increased when hands and feet were exposed to cold environment respectively, and when head and neck, hands and feet were exposed to cold environment together. 2. Exposed skin temperatures fell in cold environment. And hands temperature was lower than any other exposed skin temperatures. The hands temperature was significantly lower when head was exposed than when head was covered. And the feet temperature were significantly lower when hands were exposed than when hands were covered. 3. Mean skin temperature was the lowest when head and neck, hands and feet were exposed simultaneously, In conclusion, skin temperatures of extremities were decreased due to exposure to the cold environment. Especially upper extremities were lower than lower extremities by exposed parts of the body. It seemed that the extremities played the role of cold receptors but head and neck didn't. And there were large heat losses from the unprotected head and neck. In cold environment of 1$0^{\circ}C$ , thus, it is suggested for the purpose of thermoregulatory responses that head and neck would be covered and extremities would be exposed, especially upper extremities.

  • PDF