• Title/Summary/Keyword: Skin accumulation

Search Result 152, Processing Time 0.032 seconds

Comparative Studies to Evaluate Relative in vitro Potency of Luteolin in Inducing Cell Cycle Arrest and Apoptosis in HaCaT and A375 Cells

  • George, Vazhapilly Cijo;Kumar, Devanga Ragupathi Naveen;Suresh, Palamadai Krishnan;Kumar, Sanjay;Kumar, Rangasamy Ashok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.631-637
    • /
    • 2013
  • Luteolin is a naturally occurring flavonoid present in many plants with diverse applications in pharmacology. Despite several studies elucidating its significant anti-cancer activity against various cancer cells, the mechanism of action in skin cancer is not well addressed. Hence, we investigated the effects of luteolin in HaCaT (human immortalized keratinocytes) and A375 (human melanoma) cells. The radical scavenging abilities of luteolin were determined spectrophotometrically, prior to a cytotoxic study (XTT assay). Inhibitory effects were assessed by colony formation assay. Further, the capability of luteolin to induce cell cycle arrest and apoptosis were demonstrated by flow cytometry and cellular DNA fragmentation ELISA, respectively. The results revealed that luteolin possesses considerable cytotoxicity against both HaCaT and A375 cells with $IC_{50}$ values of 37.1 ${\mu}M$ and 115.1 ${\mu}M$, respectively. Luteolin also inhibited colony formation and induced apoptosis in a dose and time-dependent manner by disturbing cellular integrity as evident from morphological evaluation by Wright-Giemsa staining. Accumulation of cells in G2/M (0.83-8.14%) phase for HaCaT cells and G0/G1 (60.4-72.6%) phase for A375 cells after 24 h treatment indicated cell cycle arresting potential of this flavonoid. These data suggest that luteolin inhibits cell proliferation and promotes cell cycle arrest and apoptosis in skin cancer cells with possible involvement of programmed cell death, providing a substantial basis for it to be developed into a potent chemopreventive template for skin cancer.

Effect of Pycnogenol on Skin Wound Healing

  • Jeong, Moon-Jin;Jeong, Soon-Jeong;Lee, Soo-Han;Kim, Young-Soo;Choi, Baik-Dong;Kim, Seung-Hyun;Go, Ara;Kim, Se Eun;Kang, Seong-Soo;Moon, Chang-Jong;Kim, Jong-Choon;Kim, Sung-Ho;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.133-139
    • /
    • 2013
  • This study was carried out to investigate the effects of pycnogenol (PYC) on the cutaneous wound healing of the mice. The wounds were extracted on days 1, 3, 5, and 7 post-injury for histomorphometrical analysis including wound area, infiltrating inflammatory cells, wound contracture including collagen deposition. As the result, the wound area of PYC-treated group was larger than the control group on days 1 to 7. Inflammatory cells in the PYC-treated wounds were decreased at day 1 compared to the control wound tissue. From day 3 to 7, there was no significant difference between the control and the PYC-treated skin wounds. Though the degree of contraction in the PYC-treated group was lower than that of the control group from days 1 to 5, but appeared significantly higher on day 7. Compared to the control group, collagen accumulation in the PYC-treated group was higher than that of the control group from days 5 to 7. From this result, it may support the possibility that PYC would be useful agent for early inflammatory response and matrix remodeling phase of the skin wounds.

Effects of Conjugated Linoleic Acid Feeding Levels and Periods on CLA Content and Blood Characteristics of Pork (Conjugated Linoleic Acid (CLA) 급여량과 급여기간이 돈육의 CLA 함량 및 혈액성상에 미치는 영향)

  • 이정일;최진성;박준철;박종대;김영화;문홍길;주선태;박구부
    • Food Science of Animal Resources
    • /
    • v.21 no.3
    • /
    • pp.215-226
    • /
    • 2001
  • The CLA used to add in diet was chemically synthesized by alkaline isomerization method with corn oil. To investigated the effects of conjugated linoleic acid(CLA) added diet feeding on CLA accumulation and blood characteristics of pork, a total of 64 Landrace was fed both CLA-free and CLA-added(0.3, 0.6 and 0.9%) diet for 1∼4 weeks. Cholesterol compositions in blood and CLA contents and fatty acid compositions of loin, belly, bone and skin were determined at 1, 2, 3 and 4 weeks after CLA added at fed. The HDL content in blood of all treatments was higher(P<0.05) than that of control and that of treatment 3 was higher(P<0.05) than that of other treatments among the CLA feeding periods. Palmitic, stearic and linolenic acids composition of loin and belly was increased but oleic, linoleic and arachidonic acids composition of them was decreased according to increasing the CLA feeding periods. CLA contents of loin and belly were higher than that of control and increased according to increasing the quantity of CLA and CLA feeding periods. CLA contents of bone and skin were higher than that of control, too. CLA content of skin was higher than that of bone. It was suggested that CLA could be accumulated in loin, belly, bone and skin by dietary CLA supplementation, and the CLA concentration and fatty acid composition in muscle could be affected by CLA level in diet and feeding period.

  • PDF

Effects of 7-MEGATM 500 on Oxidative Stress, Inflammation, and Skin Regeneration in H2O2-Treated Skin Cells

  • Song, In-Bong;Gu, Hyejung;Han, Hye-Ju;Lee, Na-Young;Cha, Ji-Yun;Son, Yeon-Kyong;Kwon, Jungkee
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • Environmental stimuli can lead to the excessive accumulation of reactive oxygen species (ROS), which is one of the risk factors for premature skin aging. Here, we investigated the protective effects of $7-MEGA^{TM}$ 500 (50% palmitoleic acid, 7-MEGA) against oxidative stress-induced cellular damage and its underlying therapeutic mechanisms in the HaCaT human skin keratinocyte cell line (HaCaT cells). Our results showed that treatment with 7-MEGA prior to hydrogen peroxide ($H_2O_2$)-induced damage significantly increased the viability of HaCaT cells. 7-MEGA effectively attenuated generation of $H_2O_2$-induced reactive oxygen species (ROS), and inhibited $H_2O_2$-induced inflammatory factors, such as prostaglandin $E_2$ ($PGE_2$), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), and $interleukin-1{\beta}$ ($IL-1{\beta}$). In addition, cells treated with 7-MEGA exhibited significantly decreased expression of matrix metalloproteinase-1 (MMP-1) and increased expression of procollagen type 1 (PCOL1) and Elastin against oxidative stress by $H_2O_2$. Interestingly, these protective activities of 7-MEGA were similar in scope and of a higher magnitude than those seen with 98.5% palmitoleic acid (PA) obtained from Sigma when given at the same concentration (100 nL/mL). According to our data, 7-MEGA is able to protect HaCaT cells from $H_2O_2$-induced damage through inhibiting cellular oxidative stress and inflammation. Moreover, 7-MEGA may affect skin elasticity maintenance and improve skin wrinkles. These findings indicate that 7-MEGA may be useful as a food supplement for skin health.

Impact of anthropogenic activities on the accumulation of heavy metals in water, sediments and some commercially important fish of the Padma River, Bangladesh

  • M Golam Mortuza
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.66-75
    • /
    • 2024
  • Heavy metals are naturally found in the ecosystem, and their presence in the freshwater river is increasing through anthropogenic activities which pose a threat to living beings. In this study, heavy metal concentrations (Zn, Mn, Cu, Cd, Cu, Cr, Pb, and Ni) in different organs (muscle, skin, and gill) of fish from the Padma River were evaluated to quantify, and compare the contamination levels and related human health risks. The results revealed that the heavy metal concentrations in the water, surface sediments, and fish taken from the Padma River were far below the WHO/USEPA's permitted limits. The estimated daily intake (EDI) value in muscle was less than the tolerable daily intake (TDI). The target hazard quotient (THQ) and hazard indexes (HI) were less than 1, showing that consumers face no non-carcinogenic risk (CR). CR values of Cu, Cd, Cr, Pb, and Ni ranged from 4.00 × 10-8 to 6.35 × 10-6, less than 10-4, and total carcinogenic risk (CRt) values ranged from 9.85 × 10-6 to 1.10 × 10-5, indicating some pose a CR from consumption of those fish from the Padma River. To establish a more accurate risk assessment, numerous exposure routes, including inhalation and cutaneous exposure, should be explored.

Inhibitory Effect of Jewel Orchid (Anoectochilus Formosanus) Plantlet Extract against Melanogenesis and Lipid Droplet Accumulation (금선련 조직 배양체 추출물의 멜라닌 합성 및 지방축적 억제 효과)

  • Park, Chang-Min;Joung, Min-Seok;Paek, Kee-Yoeup;Choi, Jong-Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • Anoectochilus formosanus, commonly known as "Jewel Orchids", which has been used in traditional folk medicines for feber, pain, and diseases of the lung and liver in Taiwan. We artificially cultured Anoectochilus formosanus plantlet by using the bioreactor culture system for this study from Anoectochilus formosanus. Previously, several studies have been reported on pharmacological activities of lipid-metabolism, hepatoprotective activity, anti-tumor activity and immuno-stimulating effects but other efficacy were not well known as a cosmetic ingredient for skin care. In this study, we investigated the effect of melanogenesis in B16 mouse melanoma cells and lipid droplet accumulation in 3T3-L1 preadipocytes about Anoectochilus formosanus plantlet extract. We report that Anoectochilus formosanus plantlet extract inhibits the cytoplasmic lipid droplet accumulation through adipogenic differentiation of preadipocytes as well as inhibition of tyorsinase activity and melanogenesis. As a result, our findings indicate that Anoectochilus formosanus plantlet extract may be the potential natural ingredient for whitening and slimming cosmetic products.

Bacterial diseases of flounder, Paralichthys olivaceus (넙치의 세균성(細菌性) 질병(疾病))

  • Kanai, Kinya
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Flounder culture has been developed mainly in the western parts of japan, and, to date, following six bacterial diseases have been reported. Bacterial white enteritis occurs in 16 to 30-day-old flounder larvae and often causes mass mortality in seed production. Bacterium named Vibrio sp. INFL invades and multiplies in the mucosae of posterier part of intestine, and causes desquamative enteritis. Gliding bacterial disease occurs mostly in juvenile stage and in spring to summer. Diseased signs are partial discoloration and erosion of skin and fins. Histologically, epidermis are removed, and the causative bacterium, Flexibacter maritimus, multiplies on the surface of demis and invades into the muscular tissue. Vibriosis caused by Vibrio anguillarum and related organisum is one of the well-known diseases among marine fish. Outbreaks of the disease in flounder culture are relatively few, but mass mortalities in fingerlings due to the disease were reported. An outbreak of nocardiosis in the autumn of 1984 has been reported, but since then the disease scarcely occurred. The disease is characterized by formation of abscesses under the skin and white nodes in the gill, heart, spleen and kidney. Streptococcicosis occurs frequently in recent years. Beta-hemolytic streptococcus is the causative bacterium, which possesses the same biochemical and serological characteristics as $\beta$-streptococci isolated from some marine and freshwater fish, and is seemed to related to Streptococcus iniae. Edwardsiellosis is the disease that causes most damage in flounder culture in Japan. Characteristic symptoms are swelling of abdomen and intestinal protrusion from the anus due to accumulation of ascites. Edwardsiella tarda, a well-known pathogen of freshwater fish, is the causative bacterium of the disease.

  • PDF

Inhibitory Effect of Dalbergioidin Isolated from the Trunk of Lespedeza cyrtobotrya on Melanin Biosynthesis

  • Baek, Seung-Hwa;Kim, Jin-Hee;Kim, Dong-Hyun;Lee, Chan-Yong;Kim, Ji-Young;Chung, Dae-Kyun;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.874-879
    • /
    • 2008
  • Tyrosinase is a key enzyme for melanin biosynthesis, and hyperpigmentation disorders are associated with abnormal accumulation of melanin pigments, which can be reduced by treatment with depigmenting agents. The methanol extract of Lespedeza cyrtobotrya $M_{IQ}$ showed inhibitory activity against mushroom tyrosinase. The active compound was purified from the methanol extract of L. cyrtobotrya, followed by several chromatographic methods, and identified as dalbergioidin (DBG) by spectroscopic methods. The results showed that DBG exhibited tyrosinase inhibitory activity with an $IC_{50}$ of $20\;{\mu}M$. The kinetic analysis of tyrosinase inhibition revealed that DBG acted as a noncompetitive inhibitor. In addition, DBG showed a melanin biosynthesis inhibition zone in the culture plate of Streptomyces bikiniensis that has commonly been used as an indicator organism. Furthermore, $27\;{\mu}M$ DBG decreased more than 50% of melanin contents on the pigmentation using the immortalized mouse melanocyte, melan-a cell.

The Anti-Wrinkle Mechanism of Ganoderma lucidum mycelial with Acorus gramineus callus in UVB Treated HaCaT Keratinocytes

  • Eun-Sil Ko;Sang-Min Cho;Sol Lee;Ji-Hye Jung;Jea-Ran Kang;Jong-Hoon Jeong;Dong-gue Shin;Jeong Hun Seo;Jeong-Dan Cha
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.74-74
    • /
    • 2020
  • Skin is continuously exposed to a variety of environmental stresses, including ultraviolet (UV) radiation. UVB is an inherent component of sunlight that crosses the epidermis and reaches the upper dermis, leading to increased oxidative stress, activation of inflammatory response and accumulation of DNA damage among other effects. In the present study, the anti-wrinkle mechanism of Acorus gramineus callus culture supernatant (GB-AGS-PSC) was elucidated in UVB treated HaCaT keratinocytes. GB-AGS-PSC prevented the matrix metalloprotease 1 (MMP-1), elastin, and pro-collagen product and cytotoxicity and SOD inhibition. Quantitative polymerase chain reaction showed that GB-AGS-PSC-treated cells displayed dose-dependent increase in messenger RNA expression levels of Aquaporin 3 (AQP3), Keratin 1(KRT1), fillagrin, and hyaluronan synthase-2 (HAS 2) and decreased expression levels of matrix metalloproteinase-3, -9, and -13 in UVB treated HaCaT keratinocytes. Additionally, GB-AGS-PSC suppressed TNF-α, IL-1β, and IL-8 product for inflammatory responses in UVB treated HaCaT keratinocytes. Therefore, GB-AGS-PSC may be useful as an anti-photoaging resource for the skin.

  • PDF

1-Kestose Blocks UVB-Induced Skin Inflammation and Promotes Type I Procollagen Synthesis via Regulating MAPK/AP-1, NF-κB and TGF-β/Smad Pathway

  • Jihye Baek;Jong-Hwa Kim;Jiwon Park;Do Hyun Kim;Soonok Sa;Jung-Sook Han;Wonyong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.911-919
    • /
    • 2024
  • Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-β/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.