• Title/Summary/Keyword: Skilled Driver

Search Result 12, Processing Time 0.022 seconds

Effect of Driver's Posture with Different Car Pedal Systems and Skilled Levels (운전 숙련도에 따른 자동차 페달시스템 유형이 운전자세에 미치는 영향)

  • Yi, Jae-Hoon;Jang, Young-Kwan;Oh, Hyung-Sool;Hah, Chong-Ku
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.11-22
    • /
    • 2012
  • The purpose of this study was to compare drivers' postures with different car pedal systems and skilled levels. Fourteen subjects participated in this experiment and for three-dimensional analyses, six cameras (Proreflex MCU-240, Qualisys) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D. In conclusion, the patterns of pelvic, hip, knee and ankle joint angles were different as to pedal systems and skilled levels, and distal joints ROA pelvis have large angles. ROA(range of angle) of a double pedal system was small, but ROA of a single pedal system was large. These findings suggested that we should improve a present single pedal system.

A Study on Level of Safety Awareness and Disaster Prevention Measures According to Driver's Characteristic (운전자 특성에 따른 안전 의식 수준과 재해예방 대책에 대한 연구)

  • Lee, Man-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.131-136
    • /
    • 2013
  • Automobile was first introduced in 1903 in South Korea, the masses of the car was carried out rapidly compared to other countries. However, many people were killed in a traffic accidents and economic loss was occurred due to the spread of the automobile. In South Korea, 2012, traffic accident occurred 223,656 times, 5,392 fatality, 344,565 injured people. In the last five years, about 224,000 accidents per year were occurring. In other words, 610 traffic accidents occur and about 15 people pass away in one day. In addition, the proportion of traffic accidents is first place in the OECD countries and it is very high in the world. Understand occurrence tendency of traffic accident, accident frequency rate of the driver who drives more than 10 years was higher than the novice driver. In addition, as a result of examining the cause of the traffic accident, breach of safe driving obligation appears highest case (125,391 times), and followed by signal violation, break safety distance. Therefore, the majority of traffic accidents occurred by the lack of safety awareness of the driver. In this study, prevent the loss of human life and property in traffic disaster, by establish disaster prevention measures that investigated by questionnaire survey and statistical data of the state of consciousness and driving posture in response to the driving history of the driver.

Effects of Different Car Pedal Systems and Driving Skills on Drivers' Lower Extremity Postures during Fatigue (피로 시 운전 숙련도와 자동차 페달시스템 유형이 운전자의 하지자세에 미치는 영향)

  • Hah, Chong-Ku;Oh, Hyung-Sool;Jang, Young-Kwan;Yi, Jae-Hoon;Oh, Seong-Geun
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.93-105
    • /
    • 2012
  • The purpose of this study was to investigate drivers' postures in different car pedal systems and skilled levels under fatigue. Twenty four subjects participated in this experiment. For three-dimensional analyses, six cameras (Proreflex MCU-240, Qualisys) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D. In conclusion, ROAs of two leg-pedal system were less than one leg pedal system by pattern analysis. Through statistical tests, skilled levels have effects on ROAs(X, Y, Z) of ankle joint at breaking a pedal and ROAs(Y, Z) of ankle joint at accelerating a pedal. Also, car pedal systems have effects on ROAs(Y, Z) of ankle joint, and ROA(Z) of knee joint at accelerating a pedal. In addition, skilled levels and car pedal systems (cross effects) have an effect on ROA(Z) of ankle joint. These findings suggested that we should improve a present single pedal system.

A Study on the Train Operation Optimization for Energy Saving (친환경 에너지 절약을 위한 열차운전 최적화 연구)

  • Choi, Ik-Sik;Jang, Woo-Jin;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1059-1065
    • /
    • 2011
  • In line with the expansion of electric railway, reducing carbon emission and optimal train operation are required by economical, eco-friendly and efficient management. Most of the energy consumption in electric railway is consumed by train operation. So it is important that minimize the energy consumption in train operation. An analysis of the operation performance of the new model vehicle which in South Korea, Korail introduced shows that the energy consumption is different in line with the skill level of the engine driver. In this study, the know-how of train operation of a skilled engine driver is systematized by using artificial intelligence, and the technique which supports engine drivers with train operation was offered. As a result of applying in South Korea, the Gyeongbu line by using simulation, it confirmed that the maximum 20% can reduce the energy consumption in comparison with unskilled engine drivers in case of applying the Expert System.

  • PDF

A Pilot Study on the Muscle Activities in Step Input Test as an Indicator of the Vehicle Characteristics

  • Kong, Yong-Ku;Jung, Myung-Chul;Lee, In-Seok;Hyun, Young-Jin;Kim, Chang-Su;Seo, Min-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.217-227
    • /
    • 2013
  • Objective: The purpose of this study was to analyze 'response time', 'peak response time' and 'overshoot value' for each muscle by applying the EMG signal to the vehicle response in ISO 7401 and to quantify the response of the driver according to vehicle characteristics by comparing vehicle characteristics and muscle responses of the driver. Background: The Open-loop test defined in international standards ISO 7401 is the only method for evaluating the performance of the vehicle. However, this test was focused only on mechanical responses, not driver's ones. Method: One skilled male driver(22 yrs. experience) was participated in this experiment to measure muscle activities of the driver in transient state. Then the seven muscle signals were applied to calculate 'response time', 'peak response time', and 'overshoot value'. Results: In the analyses of the EMG data, the effects of vehicle type and muscle were statistically significant on the 'response time' and 'peak response time'. Also, the effects of vehicle type, muscle, and lateral acceleration level were statistically significant on the 'overshoot value' in this study. According to the analyses of the vehicle motion data, vehicle motion variable(LatAcc, Roll, YawVel) was statistically significant on the 'response time' and vehicle type, vehicle motion variable, and lateral acceleration level were statistically significant on the 'peak response time', respectively. Conclusion: In the analyses of the 'response time' and 'overshoot value', the data of muscle activities(EMGs) was better index that could evaluate the vehicle characteristic and performance than the data of vehicle motion. In case of peak response time, both EMG and vehicle motion data were good index. Application: The EMGs data from a driver might be applicable as index for evaluation of various vehicle performances based on this study.

Parking Control for a Container Trailer Truck Using Fuzzy Theory (퍼지이론을 이용한 컨테이너 트레일러ㆍ트럭의 주차제어)

  • 박계각
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • A trailer truck is a major equipment for transporting containers, and its driving is difficult due to two degrees of freedom which exist in the joint part between truck and trailer. Especially Backing a trailer truck to a parking home is a difficult exercise for all but the most skilled truck drivers. Normal driving instincts lead to erroneous movements. When watching a truck driver backing toward a parking home, one often observes the driver backing, going forward, backing again, going forward, etc., and finally backing to the desired position along the parking home. This paper discusses the design of the controller to control the steering of a trailer truck while only backing up to a parking home from an initial position. In this paper, we propose a backing up control system for a container trailer truck using fuzzy theory where the primitive fuzzy control rules are macroscopically designed using an expert's knowledge, and the control rules are regulated by LIBL(Linguistic Instruction Based Learning) to enable to back up successfully the trailer tuck to a parking home from arbitrary initial position. The validity of the proposed parking control system is shown by applying it to some initial positions on the simulator for container trailer truck.

  • PDF

Development and Validation of Robot Steered EPS HILS System (로봇 조향 기반 EPS HILS 시스템의 개발 및 검증)

  • Hong, Taewook;Kwon, Jaejoon;Park, Kihong;Ki, Siwoo;Choi, Sangsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.85-95
    • /
    • 2013
  • As the conventional hydraulic power steering system in the passenger vehicles is being rapidly replaced by EPS (Electric Power Steering) system, performance evaluation of the EPS system has become an important issue in the automotive industries. But the evaluation process takes significant expertise since steering conditions in the test protocols must be implemented with high accuracy. EPS HILS (Hardware-In the-Loop Simulation) system is developed together with robot steering system in this study. Main components of EPS HILS system include: C-EPS hardware, CarSim vehicle model, and road reaction force generation system powered by servo motor. The robot steering system, operated by another servo motor, was combined with EPS HILS system to substitute for steering efforts of human driver. The road reaction force generation system and the robot steering system were carefully validated by using the data obtained from vehicle tests. An on-center handling test was conducted by using EPS HILS system combined with the robot steering system. In the result of this study, robot-steered EPS HILS system developed with its high reliability and no need of skilled driver's, can be widely adopted to evaluate any performance of EPS system.

Effect of Balance before and after Impact on the Velocity and Angle of Golf Club during Driver Swing (골프 드라이버 스윙 시 임팩트 전·후 신체 균형성이 클럽헤드의 속도와 각도에 미치는 영향)

  • Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.411-420
    • /
    • 2011
  • The purpose of this investigation was to determine whether correlations exist between balance and impact velocity, angular position, and maximum velocity of a club during drive swing. Twelve skilled golfers were recruited in this study. They were asked to perform ten swing trials and two trials were selected for analysis. Balance parameters were calculated via the force platform while kinematic variables were determined by using the Qualisys system. The results of the present study demonstrated that the average of COP velocity was faster in the medio-lateral direction rather than the anterio-posterior direction. Also, left foot's COP velocity and free torque were greater than the right foot's before impact. The range of the right foot's COP in the anterio-posterior direction before impact were correlated with the club velocity and angular position at impact. There was a negative correlation between the left foot's COP velocity before the impact and the velocity at impact. Additionally, the range and RMS of the left foot's free torque affected on the club angular position at impact and the maximum velocity at release, respectively. Finally, a negative correlation existed between the range of the right foot's free torque after the impact and club's maximum velocity at release.

A Research of Loading Equipment Simulator Development (하역장비 시뮬레이터 개발에 관한 연구)

  • Son, J.K.;Kwon, S.J.;Bae, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2772-2774
    • /
    • 2000
  • According to the development of marine transportation business and the modernization and over sizing of vessel transportation equipment. shipping equipment used in the terminal are getting more atomized and speedier. thus the efficiency of shipping and discharging depends upon the degree of practice of terminal operating manpower. It means that cultivation of experts in this field is essentially needed and it is becoming a serious problem to guarantee the training programs to provide high-class. high-skilled manpower. The best result can be expected when we use the real equipment for training purposes. but it will cause many difficulties such as budget problem. To overcome this situation. we developed the Virtual Container Crane Simulator(VCCS System) which enables the operator to learn the operation of the equipment as well as safety problems within a short time. VCCS system begins with establishing the direction of operation by setting the appropriate motions for each step. and then it instructs the basic operation. It enhances the driver's ability to cope with accidents during operation and completes and completes the mastery of operating techniques with The repetition of practice.

  • PDF

Current Status of Technical Development for TBM Simulator (국내·외 TBM 시뮬레이터 개발 현황)

  • Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • Professional TBM Operator is in short supply worldwide, and insufficient construction experience of new personnel using TBM can lead to a decline in response capabilities when various construction risks occur. The fact that the TBM construction quality greatly depends on the skill and experience of the TBM operator, and the decrease in productivity due to insufficient skilled manpower, and the decrease in safety due to the decrease in skill level are frequently discussed problems in the TBM industry. To this end, several overseas companies and organizations have developed simulators, and a simulator is being developed in Korea. The International Tunneling Association is planning a comprehensive training, including classroom training, e-learning, simulator training and field training. Given the progress at home and abroad, TBM driver training and formal recognition of training through certification or licensing is expected to become the norm in the near future.