• 제목/요약/키워드: Skewed elliptical distribution

검색결과 4건 처리시간 0.015초

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • 정윤식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF

BAYESIAN HIERARCHICAL MODEL WITH SKEWED ELLIPTICAL DISTRIBUTION

  • Chung, Youn-Shik;Dipak K. Dey;Yang, Tae-Young;Jang, Jung-Hoon
    • Journal of the Korean Statistical Society
    • /
    • 제32권4호
    • /
    • pp.425-448
    • /
    • 2003
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution proposed originally by Chen et al. (1999) and Branco and Dey (2001). These rich classes of models combine the information of independent studies, allowing investigation of variability both between and within studies, and incorporate weight function. Here, the testing for the skewness parameter is discussed. The score test statistic for such a test can be shown to be expressed as the posterior expectations. Also, we consider the detail computational scheme under skewed normal and skewed Student-t distribution using MCMC method. Finally, we introduce one example from Johnson (1993)'s real data and apply our proposed methodology. We investigate sensitivity of our results under different skewed errors and under different prior distributions.

왜도 타원형 분포를 이용한 준모수적 계층적 선택 모형 (Semiparametric Bayesian Hierarchical Selection Models with Skewed Elliptical Distribution)

  • 정윤식;장정훈
    • 응용통계연구
    • /
    • 제16권1호
    • /
    • pp.101-115
    • /
    • 2003
  • 본 논문에서는 Chen, Dey와 Shao(1999), Branco와 Dey(2001)가 제안한 왜도가 있는 두터운 꼬리를 가지는 오차 분포와 디리슈레 과정 사전분포를 이용한 베이지안 메타분석 (meta-analysis)을 하고자 한다. 베이지안 메타분석을 위하여 가중함수를 고려한 계층적 선택 모형을 이용한다. 이때의 오차항은 왜도가 있는 비정규 분포로 가정한다. 이를 위하여 우선 왜도 타원형 분포의 일반적인 족을 소개한다 이 분포족중 왜도 정규분포와 왜도 t 분포를 오차항 분포로 이용한 베이지안 계층적 선택 모형을 고려하며, 이 때 발생하는 복잡한 베이지안 계산은 MCMC 방법으로 해결한다. 마지막으로, 실제 자료(Johnson, 1993)인 두 가지의 충치예방약의 효과에 대한 차이를 비교하기 위해 얻어진 12개의 연구 자료를 이용하여 본 연구에서 제시된 베이지안 방법을 이용하여 메타분석을 한다.

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • 제29권3호
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.