• 제목/요약/키워드: Skeletal muscle metabolism

Search Result 158, Processing Time 0.027 seconds

Effects of Sarcopenic Obesity on Metabolic Syndrome in Korean Elders: Using Data from the Korea National Health and Nutrition Examination Survey (2008-2011)

  • Choi, Hyun-A;Park, Kyung-Min
    • Research in Community and Public Health Nursing
    • /
    • v.27 no.3
    • /
    • pp.231-241
    • /
    • 2016
  • Purpose: This study was conducted to examine effects of sarcopenic obesity on metabolic syndrome in Korean elders. Methods: This study is based on the analysis of the Korea National Health and Nutrition Examination Survey (KNHANES) with 1,155 subjects (524 men, and 631 women) aged 60 or older, from 2008 to 2011. Sarcopenia was defined as an appendicular skeletal muscle (ASM), divided by weight (%) of <1 SD (standard deviation) below the sex-specific mean for young adults. Obesity was defined as a total body fat percent (men${\geq}$25%, women${\geq}$35%). Results: The prevalence of SO (sarcopenic obesity) was 13.3% among men and 22.5% among women. Both sexes showed a higher total body fat percent, and the SMI (skeletal muscle index) was the lowest in the SO group. Metabolic syndrome was highly prevalent in the SO group (52.5% men, 60.4% women). The SO group showed a higher risk for metabolic syndrome (odds ratio men 6.57 [95% CI 5.19~7.27], women 3.89 [95% CI 2.41~6.29]) than the obese group (men 3.14 [95% CI 1.76~4.14], women 2.54 [95% CI 1.38~4.65]). Conclusion: SO is a major risk factor for metabolic syndrome in Korean elders. Therefore, a nursing program should be given to the Korean elderly SO group to prevent metabolic syndrome.

The Role of Milk Products in Metabolic Health and Weight Management

  • Zemel, Michael B.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2010
  • A substantial body of evidence has emerged over the last decade in support of the novel concept that dietary calcium and dairy foods play an important role in regulating energy metabolism and thereby promote healthy weight management and reduce obesity risk. This concept has been demonstrated in experimental animals studies, cross-sectional and prospective population studies and a number of randomized clinical trials. Notably, the effects of dairy foods in weight management are more consistent than the effects of supplemental calcium across clinical trials, and calcium per se is responsible for approximately 40-50% of the effects of dairy. The calcium component is only effective in individuals with chronically low calcium intake, as it serves to prevent the endocrine response to low calcium diets which otherwise favors adipocyte energy storage; calcium also serves to promote energy loss via formation of calcium soaps in the gastrointestinal tract and thereby reduce fat absorption. The calcium-independent anti-obesity bioactivity of dairy resides primarily in whey. The key components identified to date are leucine and bioactive peptides resulting from whey protein digestion. The high concentration of leucine in whey stimulates a repartitioning of dietary energy from adipose tissue to skeletal muscle where it provides the energy required for leucine-stimulated protein synthesis, resulting in increased loss of adipose tissue and preservation of skeletal muscle mass during weight loss. Finally, dairy rich diets suppress the oxidative and inflammatory responses to obesity and thereby attenuate the diabetes and cardiovascular disease risk associated with obesity.

  • PDF

A Review : On Exercise Performance Induction Gene Factors Change (운동이 유전자 조절물질에 미치는 영향에 관한 고찰)

  • Um, Ki-Mai;Yang, Yoon-Kwon;Kim, Tae-Woo
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.745-758
    • /
    • 2001
  • The purpose of study to phenomenological examine and the mechanism regarding the gene(DNA, RNA, Protein) and sports to studied, analyzed. and evaluated. This review considers the evidence for genetic effects in several determinants of endurance performance and resistance performance, namely: body measurements and physique, body fat pulmonary functions, cardiac and circulatory functions, muscle characteristics. substrate utilization, maximal aerobic power and other. Moreover, the response to aerobic training of indicators aerobic work metabolism and endurance performance is reviewed, with emphasis on the specificity of the response and the individual differences observed in training ability. This study indicate that improvement of 'Enhancer Action' in RNA genes changed by exercise or sports. Moreover exercise was effect on Central Dogma with DNA makes RNA makes Protein. and think that occurred with exercise influence on skeletal muscle into cell have to Myosin Heavy Chain (MHC) changed was after exercise performance, which accompanied into skeletal muscle that were exercise-induces gene-modulation that is, take gene mutations. This study known that existed hormone(epinephrine)-immune system with interaction. Exercise were altered insulin binding and MAP Kinase signaling increased into immune cells. This review suggested that the high rate of glutamine utilization by cells of the immune system serves to maintain a high intra cellular concentration of the intermediates of biosynthetic pathways such that optimal rates of DNA, RNA and protein synthesis can be maintained. In the absence of glutamine, lymphocytes do not proliferate in vitro: proliferation increase greatly as the glutamine concentration increase. Glutamine is synthesized in skeletal muscle. Skeletal muscle and plasma glutamine levels are lowered by sepsis, injury, bums, surgery and endurance exercise and in the overtrained athlete. The study of result show that production of ET-1 is markedly increased tissue specifically in the heart by exercise without appreciable changes in endothelin-converting enzyme and endothelial receptor expressions, suggest that myocardial ET-1 may participate in modulation of cardiac function during exercise. Conclusionally, this study indicate that improvement of 'Enhancer Action' in RNA genes changed by exercise or sports. Moreover exercise was effect on Central Dogma with DNA makes RNA makes Protein. This study is expected to contribute the area of sports science, medicine, hereafter more effort is required to establish the relation between gene alters and exercise amount.

  • PDF

TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways

  • Jung, Jong Gab;Yi, Sang-A;Choi, Sung-E;Kang, Yup;Kim, Tae Ho;Jeon, Ja Young;Bae, Myung Ae;Ahn, Jin Hee;Jeong, Hana;Hwang, Eun Sook;Lee, Kwan-Woo
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1037-1043
    • /
    • 2015
  • The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. 1 TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-$phosphoelF2{\alpha}$-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance.

Effects of a Exercise Program on Body Composition, Physical Fitness and Lipid Metabolism for Middle-Aged Obese Women (운동프로그램이 중년비만여성의 체구성, 체력 및 지질대사에 미치는 영향)

  • Lee, Kun-Ja
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.7
    • /
    • pp.1248-1257
    • /
    • 2005
  • Purpose: This study was to examine the effects of an exercise program for middle-aged obese women. Method: The exercise program combined folk dance and resistance training. The subjects group consisted of 85 middle-aged obese women between 40 and 60 years of age. Three 8 week sessions consisted of a $55-80\%$ maximum heart rate (MHR) exercise for 60-90 minutes a day and 3 times a week from March to November, 2004. Data was collected through a pre- and post-exercise test before and after each session. Data was collected with Inbody, dynamometer and blood. This data was analyzed by descriptive statistics, and a paired t-test with an SPSS/PC(10.0 version) program. Results: There were significant positive changes in body weight, body fat mass, body mass index, percent body fat, muscle strength, muscle endurance, flexibility, and balance quality, but no significant positive changes in skeletal mass, fat free mass, percent abdominal fat(waist-hip ratio), visceral fat area, agility, total cholesterol, high density lipoprotein cholesterol, or triglycerides. Conclusion: This study showed that an exercise program has partially positive effects for middle-aged obese women. The results of this study show that exercise at community health centers should continue for middle-aged obese women's health.

Effects of a Hwanggi-tang Ethanol Extract on Glucose Uptake and Metabolism in Murine Myotubes (근육세포주에서 당 흡수 및 대사 조절에 대한 황기탕 에탄올 추출물의 효과)

  • Jang, Chul-yong;Shin, Sun-ho;Shin, Yong-jeen
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.599-611
    • /
    • 2020
  • Objectives: The aim of this study was to evaluate the effects of Hwanggi-tang on glucose digestion, uptake, and metabolism in murine C2C12 myotubes. Methods: Hwanggi-tang was prepared according to the Dong-ui-bo-gam (≪東醫寶鑑≫) prescription by 70% ethanol extraction. The effect on glucose digestion was examined by determining the inhibitory effect of Hwanggi-tang on α-glucosidase activity. We also compared and verified the gene and protein expression of genes related to glucose uptake in C2C12 myotubes treated with Hwanggi-tang or insulin. Glucose metabolism was assessed by the expression levels of associated enzymes. Results: Hwanggi-tang caused a dose-dependent inhibition of α-glucosidase activity, induced glucose uptake by activation of the PI3K/Akt/mTOR pathway in the insulin signaling pathway, and promoted glucose oxidation and β-oxidation. Conclusions: Hwanggi-tang exerts an anti-diabetic effect on murine myotubes by inhibiting glucose digestion and inducing glucose uptake and consumption.

The Effect of Vitamin $B_2$ Deficiency on Fuel Metabolism in Streptozotocin Induced Diabetic Rats (Vitamin $B_2$ 결핍이 Streptozotocin 유발 당뇨 흰쥐의 에너지대사에 미치는 영향)

  • 조윤옥;박경순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.487-492
    • /
    • 1995
  • The purpose of this study was to investigate the effect of vitamin B2 deficiency on fuel metabolism in streptozotocin-induced diabetic rats. Thirty rats were fed a vitamin B2 deticient diet(-B2) or a control diet (+B2) for 2 weeks and then subdivided into 3 groups respectively : base group, one day diabetic group and three day diabetic group. Diabetes of the rats were induced by streptozotocin injection into the tail vein. Glucose, glycogen, protein, alanine, triglyceride and free fatty acid were compared in plasma, liver, skeletal muscle of rats. Also, the total urinary nitrogen and glucose excertion were compared. Compared with +B2 rats, the increase of plasm glucose in -B2 rats due to the diabetes tended to be smaller. After diabetes were induced, the levels of plasma protein and alanine was significantly decreased and the urinary nitrogen excretion was significantly increased in -B2 rats. The level of plasma free fatty acid was increased continuously in B2 rats while increased at the first day and decreased at the third day diabetes was induced in +B2 rats. These results suggest that vitamin B2 deficiency increase protein catabolism due to the decrease of fatty acid oxidation. Thus, vitamin B2 deficiency in diabetes impair the adaptation of animals to the fuel metabolism and aggravate the body protein wasting which is one of the chronic complications of diabetes.

  • PDF

Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs

  • Men, X.M.;Deng, B.;Tao, X.;Qi, K.K.;Xu, Zi Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.457-463
    • /
    • 2016
  • The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY ($Duroc{\times}Landrace{\times}Yorkshire$) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics.

Association between cancer metabolism and muscle atrophy (암 대사와 근위축의 연관성)

  • Yeonju Seo;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.387-396
    • /
    • 2022
  • Skeletal muscle accounts for about 40-50% of body weight and is an important tissue that performs various functions, such as maintaining posture, supporting soft tissues, maintaining body temperature, and respiration. Cancer, which occurs widely around the world, causes cancer cachexia accompanied by muscular atrophy, which reduces the effectiveness of anticancer drugs and greatly reduces the quality of life and survival rate of cancer patients. Therefore, research to improve cancer cachexia is ongoing. However, there are few studies on the link between cancer and muscle atrophy. Cancer cells exhibit distinct microenvironment and metabolism from tumor cells, including tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), and insulin resistance due to the Warburg effect. Therefore, we summarize the microenvironment and metabolic characteristics of cancer cells, and the molecular mechanisms of muscle atrophy that can be affected by cytokine and insulin resistance. In addition, this suggests the possibility of improving cancer cachexia of substances affecting TAM, TAN, and Warburg effect. We also summarize the mechanisms identified so far through single agents and the signaling pathways mediated by them that may ameliorate cancer cachexia.

Effects of Endurance Exercise and Ginsenoside Rb1 on AMP-Activated Protein Kinase, Phosphatidylinositol 3-Kinase Expression and Glucose Uptake in the Skeletal Muscle of Rats (지구성 운동과 Ginsenoside Rb1가 쥐 골격근의 AMP-Activated Protein Kinase(APMK), Phosphatidylinositol 3-Kinase(PI3K) 발현 및 Glucose Uptake에 미치는 영향)

  • Jung, Hyun-Lyung;Shin, Young Ho;Kang, Ho-Youl
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1197-1203
    • /
    • 2013
  • This study investigated the effects of endurance exercise and ginsenoside $Rb_1$ on AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K) protein expression and glucose uptake in the skeletal muscle of rats. A total of 32 rats were randomly divided into four groups: CON (Control group, n=8), Ex (Exercise group; 25 m/min for 1 h, 6 days/week, 2 weeks, n=8), $Rb_1$ (Ginsenoside $Rb_1$ group; n=8), and $Rb_1/Ex$ ($Rb_1$+Exercise group, n=8). The $Rb_1$ and $Rb_1/Ex$ groups were incubated in ginsenoside $Rb_1$ (KRBP buffer, $100{\mu}g/mL$) for 60 min after a 2-week experimental treatment. After 2 weeks, the expression of phosphorylated $AMPK{\alpha}$ $Thr^{172}$, total $AMPK{\alpha}$, the p85 subunit of PI3K, pIRS-1 $Tyr^{612}$, and pAkt $Ser^{473}$ were determined in the soleus muscle. Muscle glucose uptake was measured using 2-deoxy-D-[$^3H$] glucose in epitroclearis muscle. Muscle glucose uptake was significantly higher in the three experimental groups (Ex, $Rb_1$, $Rb_1/Ex$) compared to the CON group (P<0.05). The expression of $tAMPK{\alpha}$ and $pAMPK{\alpha}$ $Thr^{172}$ was significantly higher in the Ex, $Rb_1$, and $Rb_1/Ex$ groups compared to the CON group (P<0.05). The expression of pAkt $Ser^{473}$ was significantly higher in the $Rb_1$ group compared to the CON and EX groups. However, the expression of pIRS-1 $Tyr^{612}$ and the p85 subunit of PI3K were not significantly different between the four groups. Overall, these results suggest that ginsenoside $Rb_1$ significantly stimulates glucose uptake in the skeletal muscle of rats through increasing phosphorylation in the AMPK pathway, similar to the effects of exercise.