• 제목/요약/키워드: Skeletal muscle metabolism

검색결과 158건 처리시간 0.03초

Effects of Chromium Yeast on Performance, Insulin Activity, and Lipid Metabolism in Lambs Fed Different Dietary Protein Levels

  • Yan, Xiaogang;Zhang, Wei;Cheng, Jianbo;Wang, Runlian;Kleemann, David O.;Zhu, Xiaoping;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권6호
    • /
    • pp.853-860
    • /
    • 2008
  • This experiment was conducted to study the effects of chromium (Cr), dietary crude protein (CP) level and potential interactions between these two factors on growth rate and carcass response, insulin activity and lipid metabolism in lambs. Forty-eight, 9-week-old weaned lambs (Dorper$\times$Small-tail Han sheep, mean initial body weight = $22.96kg{\pm}2.60kg$) were used in a $2{\times}3$ factorial arrangement of supplemental Cr (0 ppb, Cr0; 400 ppb, Cr1; or 800 ppb, Cr2 from chromium yeast) and CP levels (157 g/d to 171 g/d for each animal, LP; or 189 g/d to 209 g/d for each animal, HP). Growth data and blood samples were collected at the beginning and end of the feed trial, after which the lambs were killed. Both Cr additive groups and the HP group increased final weight and average daily gain, especially the Cr1 and HP group (p<0.01). HP increased pelvic fat weight (p<0.05), fat thickness of the 10th rib (p<0.05), longissimus muscle area (p<0.01) and rate of deposition of intramuscular fat (p<0.01). Supplemental Cr decreased the rate of deposition of intramuscular fat (p<0.05). Fasting insulin level and the ratio of insulin to glucose were lower with Cr1 than other groups, but with no significant difference. Glucose concentration was not affected by any treatment. Nonesterified fatty acids increased in the Cr1 (p<0.05) and HP (p<0.05) conditions and there was a significant $Cr{\times}CP$ interaction (p<0.05). Cr1 decreased triglycerides (p<0.05) and total cholesterol (p = 0.151) and HP increased high-density lipoprotein cholesterol (p<0.05). Cr1 decreased lipoprotein lipase activity in subcutaneous adipose tissue (aLPL, p<0.05) and the ratio of aLPL to lipoprotein lipase activity in skeletal muscle (mLPL, p = 0.079). mLPL and hepatic lipase (hHL) were not affected by any treatment. In the present study, Cr had limited effects on growth rate and carcass response, whereas Cr and CP had some notable effects on plasma metabolites and enzyme activities. Cr has a potential effect on energy modulation between lipid and muscle tissue. In addition, few $Cr{\times}CP$ interactions were observed.

인($^{31}$P) 자기공명분광법을 사용하여 사립체 근질병환자와 정상인과의 대사물질 비교조사 (Metabolic Abnormalities in Patients with Mitochondrial Myopathy Evaluated by In Vivo $^{31}$P Magnetic Resonance Spectroscopy)

  • Bo-Young Choe
    • Investigative Magnetic Resonance Imaging
    • /
    • 제2권1호
    • /
    • pp.89-95
    • /
    • 1998
  • 목적 : 인($^{31}P$) 자기공명분광법을 사용하여 사립체 근병(mitochondria myopathy) 환자의 대퇴부 근조직의 대사물질의 변화를 정상인과 비교조사하였다. 대상 및 방법 : 사립체 근병환자 10명과 정상인 10명을 대상으로 1.5T MRI/MRS 장비를 사용하여 인($^{31}P$) 자기공명분광법을 적용하였다. 오른쪽 대퇴부위의 근조직에 $4{\;}{\times}{\;}4{\;}{\times}4{\;}cm^{3}$ 의 관심부위 (volume of interest ; VOI)를 선정하여 image selected in vivo spectroscopy (ISIS)를 저용하였다. 인대사불질의 정\ulcorner분석은 Marquart algorithm을 사용하였다. 결과 : 사립체 근병환자의 특징은 정상인과 비교하여 Pe/PCr 대사비율이 상당히 증가하고 (P=0.003), ATP/PCr 대사비율은 상당히 감소하였다(p=0.004). 특히 ATP 중 ${\beta}-ATP/PCr$ 비율의 변화가 가장 심하게 나타났다. 환자군과 정상군의 pH 차이는 통계학적으로 큰 의의는 없었다. 결론 : 인($^{31}P$) 자기 공명분광법은 사립체 근병환자의 대퇴부 근조직의 ATP/PCr 과 Pi/PCr 대사비율을 토대로 유용한 임상 평가 자료를 제공하고, 따라서 근대사물질의 질병을 이해하는데 도움을 줄 것으로 사료된다.

  • PDF

식이 내 곡류 종류와 지방수준이 성장기 이후 비만유도 흰쥐의 당대사와 항혈전능에 미치는 영향 (The Impact of Kinds of Dietary Grain and Dietary Lipid Level on the Glucose Metabolism and Antithrombogenic Capacity of Full Grown Obesity Induced Rats)

  • 옥향목;손정숙;김미경
    • Journal of Nutrition and Health
    • /
    • 제38권8호
    • /
    • pp.613-625
    • /
    • 2005
  • This study was designed to evaluate impact of kinds of dietary grain and dietary lipid level on the glucose metabolism and antithrombogenic capacity in obesity induced rats. Total of 80 Sprague-Dawley male rats were raised for one month with control diet containing $50\%$ (w/w) well-milled rice powder and $20\%$(w/w) of dietary lipids. The rats were blocked into 8 groups and raised for two months with diets containing well-milled rice, brown rice, black rice, or glutinous barley powder and 8 or $20\%$(w/w) of dietary lipids. The contents of total dietary fiber in experimental grains were in following order; glutinous barley > black rice > brown rice > well-milled rice. Weekly food intake were lower in glutinous barley group among all experimental groups. Body weight gain was high in high level of fat groups ($50\%$w/w) than medium level of fat groups ($8\%$ w/w). Plasma glucose concentration was not different significantly in each groups. But brown rice group was a little lower than others. Plasma insulin concentration was lower in black rice and glutinous barley group than rice group. Plasma glucagon concentration did not differ significantly among all experimental groups. Hexokinase activities in skeletal muscle are different significantly according to level of dietary fat and grain variety factors. Brown rice group was significantly highest among all experimental groups in hexokinase activity. Plasma $TXB_2$ concentrations in black rice and glutinous barley groups were lower as compared to rice and brown rice groups. Plasma 6-keto-$PGF_{1\alpha}$ concentrations in glutinous barley group was higher as compared to others. In conclusion brown rice has a little lowering effect glucose concentration. Black rice and glutinous barley intakes enhance antithromboenic capacity. It is suggested that the intakes of mixed gains are recommend.

가물치(Channa argus) 젖산탈수소효소 동위효소들의 정제 및 특성 (Purification and Characterization of Lactate Dehydrogenase Isozymes in Channa argus)

  • 박은미;염정주
    • 생명과학회지
    • /
    • 제20권2호
    • /
    • pp.260-268
    • /
    • 2010
  • 가물치(Channa argus) 조직의 젖산탈수소효소 동위효소(EC 1.1.1.27, lactate dehydrogenase, LDH)를 정제하고 생화학적, 면역학적 및 역학적 방법으로 특성을 연구하였다. LDH 활성은 골격근이 380.4 units로 가장 높고 심장 13.4, 눈 3.5, 뇌 조직 5.4 units이었으며, 심장의 CS 활성은 20.7 unit로 가장 높고, LDH/CS는 골격근 172.9, 심장 0.6, 눈 0.32, 뇌 0.47이고, 단백질 양은 골격근 14.7 mg/g이며, 특이활성(units/mg)은 골격근 25.88, 심장 0.79, 눈 0.31, 뇌 1.38 units/mg이었으므로 골격근은 혐기적이고, 심장은 호기적이었다. LDH $A_4$, $B_4$, eye-specific $C_4$에 대한 항혈청을 사용한 Western blot, 면역침강반응 및 native-polyacrylamide gel electrophoresis에 의해 $A_4$, $A_3B$, $A_2B_2$, $AB_3$$B_4$가 모든 조직에서 확인되었고, 눈 조직에서 $C_4$$AC_3$, $A_2C_2$, $AC_3$, 뇌 조직에서 $A_3C$도 확인되었다. LDH $A_4$, $A_3B$, $A_2B_2$, $AB_3$, $B_4$, eye-specific $C_4$ 동위효소는 affinity chromatography와 Preparative PAGE Cell에 의해 정제되었다. LDH $A_4$ 동위효소는 $NAD^+$ 유입 후 정제되었고, eye-specific $C_4$$A_4$에 이어 용출되기 시작하였으며 $B_4$는 buffer 유입 후 용출되었다. 정제한 결과 $A_4$$B_4$ 및 eye-specific $C_4$와 분자구조의 일부가 유사하였지만 $B_4$$C_4$는 서로 다른 것으로 나타났으므로, 하부단위체 A는 보존적이고, 하부단위체 B는 A보다 더 빠르게 진화된 것으로 보인다. 피루브산 10 mM에서 $A_4$ 동위효소 39.98%, $A_2B_2$ 21.28%, $B_4$ 19.67% 및 eye-specific $C_4$ 16.87%의 활성이 남아있었고, 피루브산에 대한 $Km^{PYR}$$A_4$ 0.17 mM, $B_4$ 0.27 mM, eye-specific $C_4$ 0.133 mM였다. $A_4$, $B_4$, eye-specific $C_4$, $A_2B_2$, $A_3B$$AB_3$의 최적 pH는 각각 pH 6.50, pH 8.5, pH 5.5, pH 6.0-6.5, 5.0 및 pH 7.5였고, 동질사량체 $A_4$와 이질사량체 동위효소들은 넓은 pH 영역에서 안정하였다. 특히 골격근은 LDH 활성이 크므로 활동성이 크며, 눈조직에서 피루브산 친화력이 강한 eye-specific $C_4$에 의해 피루브산 대사가 빠르게 일어나고, 이어서 $A_4$에 의해 젖산이 산화되어지는 것으로 사료되므로, 종의 생태환경 및 먹이 획득 양식에 따라 LDH-C 발현, 기질에 대한 친화도 및 대사 시간이 다른 것으로 사료된다.

기초간호자연과학의 인체구조와 기능 내용별 필요도에 대한 연구 (A Study on the Degree of Need of Human Structure and Function Knowledge in Clinical Nurses)

  • 최명애;변영순;서영숙;황애란;김희승;홍해숙;박미정;최스미;이경숙;서화숙;신기수
    • Journal of Korean Biological Nursing Science
    • /
    • 제1권1호
    • /
    • pp.1-24
    • /
    • 1999
  • The purpose of this study was to define the content of requisite human structure and function knowledge needed for clinical knowledge of nursing practice. Subjects of human structure and function were divided into 10 units, and each unit was further divided into 21 subunits, resulting in a total of 90 items. Contents of knowledge of human structure and function were constructed from syllabus of basic nursing subjects in 4 college of nursing, and textbooks published by nurse scholars prepared with basic nursing sciences. The degree of need of 90 items was measured with a 4 point scale. The subjects of this study were college graduated 136 nurses from seven university hospitals in Seoul and three university hospitals located in Chonnam Province, Kyungbook Province, and Inchon. They have been working at internal medicine ward, surgical ward, intensive care unit, obstetrics and gynecology ward, pediatrics ward, opthalmology ward, ear, nose, and throat ward, emergency room, rehabilitation ward, cancer ward, hospice ward, and their working period was mostly under 5 years. The results were as follows: 1. The highest scored items of human structure and function knowledge necessary for nursing practice were electrolyte balance, blood clotting mechanism and anticoagulation mechanism, hematopoietic function, body fluid balance, function of plasma, and anatomical terminology in the order of importance. The lowest scored items of human structure and function knowledge necessary for nursing practice was sexual factors of genetic mutation. 2. The highest order of need according to unit was membrane transport in the living unit, anatomical terminology in movement and exercise unit, mechanism of hormone function in regulation and integration unit, component and function of blood in oxygenation function unit, structure and function of digestive system in digestive and energy metabolism unit, temperature regulation in temperature regulation unit electrolyte balance in body fluid and electrolyte unit, concept of immunity in body resistance unit, and genetics terminology in genetics unit. The highest order of importance according to subunit was membrane transportation in cell subunit, classification of tissues in tissue unit, function of skin and skin in skin subunit, anatomical derivatives of the skeleton subunit, classification of joints in joint subunit, an effect of exercise on muscles in muscle subunit, function of brain in nervous system subunit, special sense in sensory subunit mechanism of hormone function in endocrine subunit, structure and function of female reproductive system in reproductive system unit, structure and function of blood in blood unit, structure of heart, electrical and mechanical function in cardiovascular system unit, structure of respiratory system in respiratory system subunit, structure and function of digestive system in digestive system subunit, hormonal regulation of metabolism in nutrition and metabolism subunit, function of kidney in urologic system subunit, electolyte balance in body fluid, electolyte and acid-base balance subunit. 3. The common content of human structure and function knowledge need for all clinical areas in nursing was structure and function of blood, hematopoietic function, function of plasm, coagulation mechanism and anticoagulation mechanism, body fluid, electrolyte balance, and acid-base balance. However, the degree of need of each human structure and function knowledge was different depending on clinical areas. 4. Significant differences in human structure and function knowledge necessary for nursing practice such as skin and derivatives of the skin, growth and development of bone, classification of joint, classification of muscle, structure of muscle, function of muscle, function of spinal cord, peripheral nerve, structure and function of pancrease, component and function of blood, function of plasma, structure and function of blood, hemodynamics, respiratory dynamics, gas transport, regulation of respiration, chemical digestion of foods, absorption of foods, characteristics of nutrients, metabolism and hormonal regulation, body energy balance were demonstrated according to the duration of work. 5. Significant differences in human structure and function knowledge necessary for nursing practice such as classification of tissue, classification of muscles, function of muscles, muscle metabolism, classification of skeletal muscles, classification of nervous system, neurotransmitters, mechanism of hormone function, pituitary and pituitary hormone, structure and function of male reproductive organ, structure and function of female reproductive organ, component and function of blood, function of plasma, coagulation mechanism and anticoagulation mechanism, gas exchange, gas transport, regulation of respiration, characteristics of nutrients, energy balance, function of kidney, concept of immunity, classification and function of immunity were shown according to the work area. Based on these findings, all the 90 items constructed by Korean Academic Society of Basic Nursing Science should be included as contents of human structure and function knowledge.

  • PDF

Mechanisms of Myotonic Dystrophies 1 and 2

  • Lubov, Timchenko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Myotonic Dystrophies type 1 and 2 (DM1/2) are neuromuscular disorders which belong to a group of genetic diseases caused by unstable CTG triplet repeat (DM1) and CCTG tetranucleotide repeat (DM2) expansions. In DM1, CTG repeats are located within the 3' untranslated region of myotonin protein kinase (DMPK) gene on chromosome 19q. DM2 is caused by expansion of CCTG repeats located in the first intron of a gene coding for zinc finger factor 9 on chromosome 3q. The CTG and CCTG expansions are located in untranslated regions and are expressed as pre-mRNAs in nuclei (DM1 and DM2) and as mRNA in cytoplasm (DM1). Investigations of molecular alterations in DM1 discovered a new molecular mechanism responsible for this disease. Expansion of un-translated CUG repeats in the mutant DMPK mRNA disrupts biological functions of two CUG-binding proteins, CUGBP and MNBL. These proteins regulate translation and splicing of mRNAs coding for proteins which play a key role in skeletal muscle function. Expansion of CUG repeats alters these two stages of RNA metabolism in DM1 by titrating CUGBP1 and MNBL into mutant DMPK mRNA-protein complexes. Mouse models, in which levels of CUGBP1 and MNBL were modulated to mimic DM1, showed several symptoms of DM1 disease including muscular dystrophy, cataracts and myotonia. Mis-regulated levels of CUGBP1 in newborn mice cause a delay of muscle development mimicking muscle symptoms of congenital form of DM1 disease. Since expansion of CCTG repeats in DM2 is also located in untranslated region, it is predicted that DM2 mechanisms might be similar to those observed in DM1. However, differences in clinical phenotypes of DM1 and DM2 suggest some specific features in molecular pathways in both diseases. Recent publications suggest that number of pathways affected by RNA CUG and CCUG repeats could be larger than initially thought. Detailed studies of these pathways will help in developing therapy for patients affected with DM1 and DM2.

저항성훈련이 흰쥐 골격근의 GLUT-4 단백질 및 LDH 동위효소 발현에 미치는 영향 (Effects of Resistance Training on Skeletal Muscle GLUT-4 Protein and LDH Isozyme Expression in Rats)

  • 김연희;이상학;김종오;서태범;김영표;백경아;윤진환
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1532-1540
    • /
    • 2011
  • 본 연구는 7주령의 S D계 흰쥐를 이용하여 12주 동안의 사다리 오르기 저항성 운동 수행 후 가자미근과 비복근 내 GLUT-4 발현량 및 LDH 동위효소들의 변화를 측정하여 당 대사 및 젖산 기전에 대한 연구로 다음과 같은 결론을 얻었다. 12주간의 사다리 오르기 저항성 운동은 체중감소에 효과적인 것으로 나타났으며, 가자미근 및 비복근 조직 GLUT-4 단백질 발현을 유의하게 증가시키는 것으로 나타났다. 또한 가자미근 및 비복근 조직 LDHA B-type 동위효소의 발현을 유의하게 증가시키는 것으로 나타났다. 본 연구의 결과를 종합해 볼 때 12주간의 저항성훈련은 체중의 감소와 골격근 내 GLUT-4의 증가 그리고 LDH A4 동위효소를 제외한 LDH B-type 동위 효소의 증가와 같은 신체조성의 균형과 당대사능력 및 미토콘드리아의 기능 개선에 영향을 미치는 것으로 사료된다. 추후 연구에서는 휴식시간이나 운동 강도의 차이와 근형태별에 따른 유 무산소적 저항훈련 프로그램의 효과에 따른 다양한 연구가 실시되어야 할 것으로 생각된다.

락트산 산증과 칼륨이동에 관한 실험적 연구 (An Experimental Study of Lactic Acidosis and Potassium Transfer in the Dog)

  • 박주철;이영균
    • Journal of Chest Surgery
    • /
    • 제12권4호
    • /
    • pp.395-402
    • /
    • 1979
  • Intracellular pH was determined by distribution of 5.5-dimethyl-2,4-oxazolidlnedione [DMO]in the skeletal muscle of dogs before and after lactic acidosis induced by intravenous infusion of lactic acid solution. After infusion of lactic acid solution arterial pH decreased from 7.40 to around 7.12 [P<0.001]and metabolic acidosis was induced. However, dose-pH change response was not proportional as in the case of hydrochloric acid infusion. During lactic acidosis, intracellular pH changed very little except when venous blood $pCO_2$ increased significantly. The decrease of intracellular pH in lactic acidosis might be due primarily to the increase of intracellular $pCO_2$. And during lactic acidosis, change of extracellular pH was larger than that of intracellular pH, and this was also the case of change In hydrogen Ion concentration in extracellular and intracellular fluid. The fact was estimated that exogenous lactic acid transported into the cell does not contribute to pH change by the participation in the metabolism. Change in plasma potassium Ion concentration was not eminent as metabolic acid-base disturbances by other origin, and changing pattern of Hi/He ratio was not same as Ki/Ke ratio. In spite of no changes in extracellular potassium ion concentration after exogenous lactic acidosis total amount of potassium ion in extracellular fluid increased from 12.62mEg to 18.26mEg [P< 0.05].

  • PDF

비타민 B6 부족이 정기적인 운동 훈련시 연료의 이용과 혈액 콜레스테롤 성상에 미치는 영향 (The Effect of Vitamin B6 Deficiency on the Utilization of Fuel and Blood Cholesterol Profile with Regular Exercise-Training in Rats)

  • 조윤옥
    • Journal of Nutrition and Health
    • /
    • 제29권8호
    • /
    • pp.881-888
    • /
    • 1996
  • The purpose of this study was to determine whether vitamin B6(B6) deficiency affects fuel utilization and blood cholesterol profile with exercise-training. Twenty-four rats were fed a B6 deficient(-B6) diet or a control (+B6) diet for 5 weeks and either exercised(EX) or nonexercised (NE). EX rats were exercised on treadmill(10$^{\circ}$, 0.5-0.8km/h) for 20 minutes everyday. Glucose(GLU), glycogen (GLY), protein(PRO), trglyceride(TG), free fatty acid(FFA), total cholesterl(TC), HDL-cholesterol(HDL-C) and LDL-choleterol(LDL-C) were compared in plasma(P), liver(L) and skeletal muscle(M) of rats. There was a vitamin effect on the level of P-GLU, P-TG, M-TG, L-GLY, L-PRO and an exercise effect on the level of P-PRO, P-FFA, M-PRO, L-GLY, L-TG, P-TC, P-HDL-C, P-LDL-C. Compared to +B6 rats were lower and there were no differences in P-GLU, P-FFA, P-TG. M-GLY, L-TG, P-TC and P-HDL-C. In EX group, the level of P-TG was higher and M-PRO was lower in -B6 rats. There were no differences in M-GLY, L-TG, P-TC and P-HDL-C. These results suggest that a lowered intake of vitamin B6 may impair the adaptation of animals to fuel metabolism related to a decrease of fatty acid oxidation and attenuates the exercise-traning effect on blood lipid profile.

  • PDF

Genomic Organization, Tissue Distribution and Developmental Expression of Glyceraldehyde 3-Phosphate Dehydrogenase Isoforms in Mud Loach Misgurnus mizolepis

  • Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제16권4호
    • /
    • pp.291-301
    • /
    • 2013
  • The genomic organization, tissue distribution, and developmental expression of two paralogous GAPDH isoforms were characterized in the mud loach Misgurnus mizolepis (Cypriniformes). The mud loach gapdh isoform genes (mlgapdh-1 and mlgapdh-2) had different exon-intron organizations: 12 exons in mlgapdh-1 (spanning to 4.88 kb) and 11 in mlgapdh-2 (11.78 kb), including a non-translated exon 1 in each isoform. Southern blot hybridization suggested that the mud loach might possess the two copies of mlgapdh-1 and a single copy of mlgapdh-2. The mlgapdh-1 transcript levels are high in tissues requiring high energy flow, such as skeletal muscle and heart, whereas mlgapdh-2 is expressed abundantly in the brain. Both isoforms are differentially regulated during embryonic and larval development, during which their expression is upregulated with the progress of development. Lipopolysaccharide challenge preferentially induced mlgapdh-2 transcripts in the liver. Therefore, the two isoforms have diversified functionally; mlgapdh-1 is associated more closely with energy metabolism, while mlgapdh-2 is related more to stress/immune responses, in the mud loach.