• Title/Summary/Keyword: Skeletal muscle cell

Search Result 193, Processing Time 0.023 seconds

Effects of Ginseng Extract on Excitable Cell Membrane Potential (인삼추출물이 흥분성세포의 막전압에 미치는 영향)

  • Chung, Jin-Mo;Paik, Kwang-Se;Nam, Taick-Sang;Kim, In-Kyo;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.15 no.1
    • /
    • pp.3-8
    • /
    • 1981
  • Studies have been conducted to test the effect of Ginseng alcohol extract on the membrane potentials of frog skeletal muscle. The gastrocnemius muscle was isolated and placed in a chamber containing the Clark-frog Ringer solution. Membrane potentials were recorded using microelectrodes filled with 3 M KCI and muscle was electrically stimulated to obtain action potential. Changes in both the action potential and the resting membrane potential were observed after adding an appropriate amount of Ginseng alcohol extract in the perfusing Ringer solution. The results obtained from 346 muscle cells are summarized as follows : 1) The average resting membrane potential of the normal frog gastrocnemius muscle cell was -92.8 mV and the peak of the action potential reached at 29.8 mV. 2) Both the resting membrane potential and the peak of the action potential decreased by Ginseng alcohol extract, the effect being proportional to the dose of Ginseng alcohol extract. 3) The resting membrane potential and the peak of the action potential continuously decreased until about 40 min after Ginseng addition and leveled off thereafter. The potentials recovered to its original value after Ginseng was washed out. 4) The resting membrane potential was more sensitive to the Ginseng alcohol extract than was the action potential. These results strongly suggest that Ginseng alcohol extract increases both the $Na^+$ and $K^+$ permeability in the skeletal muscle cell membrane.

  • PDF

Isolated temporalis muscle metastasis of renal cell carcinoma

  • Lee, Da Woon;Ryu, Hyeong Rae;Kim, Jun Hyuk;Choi, Hwan Jun;Ahn, Hyein
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.1
    • /
    • pp.66-70
    • /
    • 2021
  • Isolated head and neck metastasis of renal cell carcinoma (RCC) is relatively rare and metastasis to the temple area is very rare. Here, we present the case of a 51-year-old man who was diagnosed with RCC 2 years earlier and had a contralateral metastatic temple area lesion. The patient who was diagnosed with renal cell cancer and underwent a nephrectomy 2 years ago was referred to the plastic surgery department for a temple mass on the contralateral side. In the operative field, the mass was located in the temporalis muscle with a red-to-purple protruding shape. Biopsy of the mass revealed a metastatic RCC lesion. Computed tomography imaging showed a lobulated, contoured enhancing lesion. Positron emission tomography/computed tomography imaging showed high-fluorodeoxyglucose uptake in the right temporalis muscle. The patient underwent wide excision of the metastatic RCC including the temporalis muscle at the plastic surgery department. Skeletal muscle metastasis of head and neck lesions is extremely rare in RCC. Isolated contralateral temporalis muscle metastasis in RCC has not been previously reported in the literature. If a patient has a history of malignant cancer, plastic surgeons should always consider metastatic lesions of head and neck tumors. Because of its high metastatic ability and poor prognosis, it is very important to keep this case in mind.

Effects of Chaenomelis Fructus Extract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes (모과추출물의 C2C12 근육세포에서 근분화 및 에너지대사조절인자 발현 증진 효과 연구)

  • Kang, Seok Yong;Hyun, Sun Young;Kwon, Yedam;Park, Yong-Ki;Jung, Hyo Won
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.99-107
    • /
    • 2019
  • Objective : The present study was conducted to investigate the effects of Chaenomelis Fructus (CF) on the regulation of biogenesis in C2C12 mouse skeletal muscle cells. Methods : C2C12 myoblasts were differentiated into myotubes in 2% horse serum-containing medium for 5 days, and then treated with CF extract at different concentrations for 48 hr. The expression of muscle differentiation markers, myogenin and myosin heavy chain (MHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1α), sirtuin1 (Sirt1), nuclear respiratory factor1 (NRF1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) and western blot, respectively. The cellular glucose levels and total ATP contents were measured by cellular glucose uptake and ATP assays, respectively. Results : Treatment with CF extract (0.01, 0.02, and 0.05 mg/㎖) significantly increased the expression of MHC protein in C2C12 myotubes compared with non-treated cells. CF extract significantly increased the expression of PGC1α and TFAM in the myotubes. Also, CF extract significantly increased glucose uptake levels and ATP contents in the myotubes. Conclusion : CF extract can stimulate C2C12 myoblasts differentiation into myotubes and increase energy production through upregulation of the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cell. This suggests that CF can help to improve skeletal muscle function with stimulation of the energy metabolism.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

Steatosis in a Slaughtered Korean Native Cattle (도축한우에 있어서 근육지방증)

  • Do, Sun-Hee;Lee, Cha-Soo;Jeong, Won-Il;Chung, Jae-Yong;Jeong, Da-Hee;Noh, Dong-Hyung;An, Mi-Young;Jee, Young-Heun;Lee, Mi-Na
    • Journal of Veterinary Clinics
    • /
    • v.19 no.3
    • /
    • pp.350-352
    • /
    • 2002
  • Muscular lesion was detected in a 23-month-old castrated bull encountered at Kyungsan slaughter house. The lesion appeared as fat intervening muscle fibers. The affected animal had no clinical signs. On microscopic examination, there was replacement of many muscle fibers by normal fat cells. Numerous fat cells were located between muscle fibers. Remaining skeletal muscle cells were in degenerative process, and thus abnormal skeletal muscle cells had loose fibers while normal had intact ones. The advent of inflammatory cells is not at the lesion, which is unique view in steatosis.

A Molecular Study of Sopungsungi-won(Shufengshunqiyuan) about Regulation of PPARs in Mouse NMu2Li Liver Cells and C2C12 Skeletal Muscle Myogenic Progenital Cells (소풍순기원(疏風順氣元)이 mouse의 NMu2Li 간세포와 C2C12 골격근세포에서 PPARs 조절의 분자기전에 미치는 영향)

  • Oh, Young-Jin;Shin, Soon-Shik;Yoon, Mi-Chung;Kim, Bo-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.1
    • /
    • pp.147-164
    • /
    • 2009
  • Objectives : We investigated the effects of Sopungsungi-won(Shu!engshunqiyuan) (SSEx1, SSEx2) to treat the metabolic syndrome by the molecular mechanism of regulation of PPAR and modulation of mitochondrial MCAD, VLCAD mRNA expression. Methods : Mouse NMu2Li liver cells and C2C12 skeletal muscle myogenic progenital cells were transiently transfected with expression plasmids for PPAR(PPAR${\alpha}$, PPAR${\delta}$), a luciferase reporter gene construct containing 3 copies of the PPRE from the rat acyl-CoA oxidase gene and ${\beta}$-galactosidase gene. Cells were treated with several concentrated kinds of SSEx1, SSEx2 at the initial time of culture and analyzed PPAR${\alpha}$, PPAR${\delta}$ reporter gene activity using spectrophotometer (405 nm). Total RNA was extracted from SSEx1, SSEx2 and measured mRNA levels of mitochondrial MCAD, VLCAD. Representative RT-PCR bands are shown. Results : 1. SSEx1 increased the expression of PPAR${\alpha}$ reporter gene activities at 0.1 ${\mu}$g/ml (p${\mu}$g/ml (p<0.05), SSEx2 at 0.1 ${\mu}$g/ml (p${\mu}$g/ml (p<0.05) significantly in NMu2Li liver cell lines. 2. SSEx1 increased the expression of PPAR${\alpha}$ reporter gene activities at 1 ${\mu}$g/ml (p${\mu}$g/ml (p${\alpha}$ reporter gene activities in C2C12 skeletal muscle cells. 4. SSEx1 increased the modulation of mitochondrial MCAD mRNA expression (p<0.05) significantly in NMu2Li liver cell lines. 5. SSEx1, SSEx2 both increased the modulation of mitochondrial MCAD mRNA expression (p<0.05) significantly in C2C12 skeletal muscle cells. Conclusions : These results show the SSEx1, SSEx2 can be used as therapeutic agent for metabolic syndrome and it's molecular mechanisms of PPAR more contribute to the activation of PPAR${\alpha}$ then PPAR${\delta}$ reporter gene activities and it's total RNA more contribute to the modulation of mitochondrial MCAD then VLCAD mRNA expression.

  • PDF

The Activation of Stress-induced Heat Shock Protein 27 and the Relationship of Physical Therapy (스트레스-유도 열충격단백질 27(Heat Shock Protein 27)의 활성과 물리치료의 상관성)

  • Kim, Mi-Sun;Lee, Sung-Ho;Kim, Il-Hyun;Hwang, Byong-Yong;Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Heat shock proteins (HSPs) are a group of proteins that are activated when cells are exposed to a variety of environmental stresses, such as infection, inflammation, exposure to toxins, starvation, hypoxia, brain injury, or water deprivation. The activation of HSPs by environmental stress plays a key role in signal transduction, including cytoprotection, molecular chaperone, anti-apoptotic effect, and anti-aging effects. However, the precise mechanism for the action of small HSPs, such as HSP27 and mitogen-activated protein kinases (MAPKs: extracellular-regulated protein kinase 1/2 (ERK1/2), p38MAPK, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), is not completely understood, particularly in application of cell stimulators including platelet-derived growth factor (PDGF), angiotensin II (AngII), tumor necrosis factor $\alpha$ (TNF$\alpha$), and $H_2O_2$. This study examined the relationship between stimulators-induced enzymatic activity of HSP27 and MAPKs from rat smooth and skeletal muscles. Methods: 2-dimensional electrophoresis (2DE) and matrix assisted laser desorption ionizationtime-of-flight/time-of-flight (MALDI-TOF/TOF) analysis were used to identify HSP27 from the intact vascular smooth and skeletal muscles. Three isoforms of HSP27 were detected on silver-stained gels of the whole protein extracts from the rat aortic smooth and skeletal muscle strips. Results: The expression of PDGF, AngII, TNF$\alpha$, and $H_2O_2$-induced activation of HSP27, p38MAPK, ERK1/2, and SAPK/JNK was higher in the smooth muscle cells than the control. SB203580 (30${\mu}$M), a p38MAPK inhibitor, increased the level of HSP27 phosphorylation induced by stimulators in smooth muscle cells. Furthermore, the age-related and starvation-induced activation of HSP27 was higher in skeletal muscle cells (L6 myoblast cell lines) and muscle strips than the control. Conclusion: These results suggest, in part, that the activity of HSP27 and MAPKs affect stressors, such as PDGF, AngII, TNF$\alpha$, $H_2O_2$, and starvation in rat smooth and skeletal muscles. However, more systemic research will be needed into physical therapy, including thermotherapy, electrotherapy, radiotherapy and others.

  • PDF

The Expression and the Subcellular Localization of Regulatory Subunits of Class IA Phosphoinositide 3-Kinase in L6 Skeletal Muscle Cell

  • Woo Joo-Hong;Lim Jeong-Soon;Kim Hye-Sun
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.201-208
    • /
    • 2006
  • PI3-kinase activity through p85, the regulatory subunit of class IA PI3-kinase, is indispensable for the growth, differentiation, and survival of skeletal muscle cells, but little is known about the function of other regulatory subunits such as p55 and p50. We examined the subcellular localization and the expression of the regulatory subunits of class IA PI3-kinase in L6 myoblasts. Both p55 and p50 as well as p85 were expressed in L6 myoblasts. Whereas p85 was localized at both cytosolic and nuclear tractions, p55 and p50 were localized at only the nuclear traction. During the differentiation of L6 myoblasts, the protein concentrations of both p55 and p50 were decreased but that of p85 was not significantly changed. Menadione-induced oxidative stress induced the translocation of p85 from cytosol to nucleus and the increase of p55 expression. These results suggest that the regulatory subunits of class IA PI3-kinase play an important role in L6 myoblasts.

  • PDF

The Fast Skeletal Muscle Myosin Light Chain Is Differentially Expressed in Smooth Muscle Cells of OVA-challenged Mouse Trachea

  • Kim, Ho-Young;Rhim, TaiYoun;Ahn, Mi-Hyun;Yoon, Pyoung-Oh;Kim, Soo-Ho;Lee, Sang-Han;Park, Choon-Sik
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • In a search for new molecular pathways associated with asthma, we performed an mRNA differential display analysis using total RNA extracted from the tracheal tissues of ovalbumin (OVA)-challenged mice and sham controls. cDNAs corresponding to mRNAs for which expression levels were altered by OVA-challenge were isolate and sequenced. Twenty-eight genes differentially expressed in sham and OVA challenged mice were identified. A GenBank BLAST homology search revealed that they were related to cytoskeleton remodeling, transcription, protein synthesis and modification, energy production, and cell growth and differentiation. Two were selected for further characterization. Up-regulation of both the perinatal skeletal myosin heavy chain (skMHC) and fast skeletal muscle myosin light chain (skMLC) genes was confirmed by RT-PCR of trachea tissue from OVA challenged mice. Overexpression of skMLC protein was observed in the smooth muscle layers of OVA-challenged mice by immunohistochemistry, and the surface areas stained with skMLC antibody increased in the OVA-challenged mice. The overexpression of skMLC in murine asthma may be associated with the changes of bronchial smooth muscle.

Transcriptional Alteration of p53 Related Processes As a Key Factor for Skeletal Muscle Characteristics in Sus scrofa

  • Kim, Seung-Soo;Kim, Jung-Rok;Moon, Jin-Kyoo;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Kwan-Suk;Kim, Jong-Joo;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.565-573
    • /
    • 2009
  • The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.