DOI QR코드

DOI QR Code

Transcriptional Alteration of p53 Related Processes As a Key Factor for Skeletal Muscle Characteristics in Sus scrofa

  • Kim, Seung-Soo (College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jung-Rok (College of Life Sciences and Biotechnology, Korea University) ;
  • Moon, Jin-Kyoo (College of Life Sciences and Biotechnology, Korea University) ;
  • Choi, Bong-Hwan (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Tae-Hun (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Lee, Cheol-Koo (College of Life Sciences and Biotechnology, Korea University)
  • Received : 2009.08.26
  • Accepted : 2009.09.22
  • Published : 2009.12.31

Abstract

The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.

Keywords

Acknowledgement

Supported by : Rural Development Administration, Korea University

References

  1. Aksu, S., Koczan, D., Renne, U., Thiesen, H.J., and Brockmann, G.A. (2007). Differentially expressed genes in adipose tissues of high body weight-selected (obese) and unselected (lean) mouse lines. J. Appl. Genet. 48, 133-143 https://doi.org/10.1007/BF03194671
  2. Bennetts, J.S., Rendtorff, N.D., Simpson, F., Tranebjaerg, L., and Wicking, C. (2007). The coding region of TP53INP2, a gene expressed in the developing nervous system, is not altered in a family with autosomal recessive non-progressive infantile ataxia on chromosome 20q11-q13. Dev. Dyn. 236, 843-852 https://doi.org/10.1002/dvdy.21064
  3. Bensaad, K., and Vousden, K.H. (2007). p53: new roles in metabolism. Trends Cell. Biol. 17, 286-291 https://doi.org/10.1016/j.tcb.2007.04.004
  4. Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E., and Vousden, K.H. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-120 https://doi.org/10.1016/j.cell.2006.05.036
  5. Brand, K.A., and Hermfisse, U. (1997). Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. 11, 388-395 https://doi.org/10.1096/fasebj.11.5.9141507
  6. Calhabeu, F., Lafont, J., Le Dreau, G., Laurent, M., Kazazian, C., Schaeffer, L., Martinerie, C., and Dubois, C. (2006). NOV/CCN3 impairs muscle cell commitment and differentiation. Exp. Cell Res. 312, 1876-1889 https://doi.org/10.1016/j.yexcr.2006.02.027
  7. Caruana, G., and Bernstein, A. (2001). Craniofacial dysmorphogenesis including cleft palate in mice with an insertional mutation in the discs large gene. Mol. Cell. Biol. 21, 1475-1483 https://doi.org/10.1128/MCB.21.5.1475-1483.2001
  8. Casa, A.J., Dearth, R.K., Litzenburger, B.C., Lee, A.V., and Cui, X. (2008). The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Front Biosci. 13, 3273-3287
  9. Chang, C., Martin, R.G., Livingston, D.M., Luborsky, S.W., Hu, C.P., and Mora, P.T. (1979). Relationship between T-antigen and tumor- specific transplantation antigen in simian virus 40-transformed cells. J. Virol. 29, 69-75
  10. Chitnis, M.M., Yuen, J.S., Protheroe, A.S., Pollak, M., and Macaulay, V.M. (2008). The type 1 insulin-like growth factor receptor pathway. Clin. Cancer Res. 14, 6364-6370 https://doi.org/10.1158/1078-0432.CCR-07-4879
  11. Choi, K.Y., Moon, J.K., Choi, S.H., Kim, K.S., Choi, Y.I., Kim, J.J., and Lee, C.K. (2008). Differential expression of cytochrome P450 genes regulate the level of adipose arachidonic acid in Sus scrofa. Asia-Aust. J. Anim. Sci. 21, 967-971
  12. Chumakov, P.M. (2007). Versatile functions of p53 protein in multicellular organisms. Biochemistry 72, 1399-1421
  13. Daaka, Y., Pitcher, J.A., Richardson, M., Stoffel, R.H., Robishaw, J.D., and Lefkowitz, R.J. (1997). Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. Proc. Natl. Acad. Sci. USA 94, 2180-2185 https://doi.org/10.1073/pnas.94.6.2180
  14. Dittmer, J. (2003). The biology of the Ets1 proto-oncogene. Mol. Cancer 2, 29 https://doi.org/10.1186/1476-4598-2-29
  15. Draviam, V.M., Stegmeier, F., Nalepa, G., Sowa, M.E., Chen, J., Liang, A., Hannon, G.J., Sorger, P.K., Harper, J.W., and Elledge, S.J. (2007). A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling. Nat. Cell Biol. 9, 556-U136 https://doi.org/10.1038/ncb1569
  16. Dzeja, P., and Terzic, A. (2009). Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int. J. Mol. Sci. 10, 1729-1772 https://doi.org/10.3390/ijms10041729
  17. Fischer, R.S., and Fowler, V.M. (2003). Tropomodulins: life at the slow end. Trends Cell Biol. 13, 593-601 https://doi.org/10.1016/j.tcb.2003.09.007
  18. Flores, C., Ma, S.F., Maresso, K., Ober, C., and Garcia, J.G. (2007). A variant of the myosin light chain kinase gene is associated with severe asthma in African Americans. Genet. Epidemiol. 31, 296-305
  19. Guo, Z., Linn, J.F., Wu, G., Anzick, S.L., Eisenberger, C.F., Halachmi, S., Cohen, Y., Fomenkov, A., Hoque, M.O., Okami, K., et al. (2004). CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer. Nat. Med. 10, 374-381 https://doi.org/10.1038/nm1010
  20. Han, X., Budreau, A.M., and Chesney, R.W. (2000). Identification of promoter elements involved in adaptive regulation of the taurine transporter gene: role of cytosolic Ca2+ signaling. Adv. Exp. Med. Biol. 483, 535-544 https://doi.org/10.1007/0-306-46838-7_58
  21. Huang, J., Xu, L.G., Liu, T., Zhai, Z., and Shu, H.B. (2006). The p53-inducible E3 ubiquitin ligase p53RFP induces p53- dependent apoptosis. FEBS Lett. 580, 940-947 https://doi.org/10.1016/j.febslet.2005.09.105
  22. Hwang, I., Park, B., Cho, S., Kim, J., Choi, Y., and Lee, J. (2004). Identification of muscle proteins related to objective meat quality in Korean native black pig. Asian-Australasian J. Anim. Sci. 17, 1599-1607 https://doi.org/10.5713/ajas.2004.1599
  23. Iizuka-Kogo, A., Ishidao, T., Akiyama, T., and Senda, T. (2007) Abnormal development of urogenital organs in Dlgh1-deficient mice. Development 134, 1799-1807 https://doi.org/10.1242/dev.02830
  24. Iotsova, V., Crepieux, P., Montpellier, C., Laudet, V., and Stehelin, D. (1996) TATA-less promoters of some Ets-family genes are efficiently repressed by wild-type p53. Oncogene 13, 2331-2337
  25. Jeon, J.T., Park, E.W., Jeon, H.J., Kim, T.H., Lee, K.T., and Cheong, I.C. (2003). A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Mol. Cells 16, 113-116
  26. Kim, H.J., and Lee, W.J. (2009). Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells. Mol. Cells 28, 189-194 https://doi.org/10.1007/s10059-009-0118-8
  27. Kim, K.S., Yeo, J.S., and Kim, J.W. (2002). Assessment of genetic diversity of Korean native pig (Sus scrofa) using AFLP markers. Genes Genet. Syst. 77, 361-368 https://doi.org/10.1266/ggs.77.361
  28. Kim, T.H., Choi, B.H., Chang, G.W., Lee, K.T., Lee, H.Y., Lee, J.H., Kim, K.S., Park, C.K. and Moran, C. (2005a). Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein (ADRP). J. Anim. Breed Genet. 122, 240-246 https://doi.org/10.1111/j.1439-0388.2005.00518.x
  29. Kim, T.H., Kim, K.S., Choi, B.H., Yoon, D.H., Jang, G.W., Lee, K.T., Chung, H.Y., Lee, H.Y., Park, H.S., and Lee, J.W. (2005b). Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83, 2255-2263 https://doi.org/10.2527/2005.83102255x
  30. Kim, N., Lim, J., Song, M., Kim, O., Park, B., Kim, M., Hwang, I., and Lee, C. (2008). Comparisons of longissimus muscle metabolic enzymes and muscle fiber types in Korean and western pig breeds. Meat Sci. 78, 455-460 https://doi.org/10.1016/j.meatsci.2007.07.014
  31. Kress, M., May, E., Cassingena, R., and May, P. (1979). Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J. Virol. 31, 472- 483
  32. Lane, D.P., and Crawford, L.V. (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261-263 https://doi.org/10.1038/278261a0
  33. Li, J., Rao, H., Burkin, D., Kaufman, S.J., and Wu, C. (2003). The muscle integrin binding protein (MIBP) interacts with alpha7beta1 integrin and regulates cell adhesion and laminin matrix deposition. Dev. Biol. 261, 209-219 https://doi.org/10.1016/S0012-1606(03)00304-X
  34. Linossier, M.T., Dormois, D., Perier, C., Frey, J., Geyssant, A., and Denis, C. (1997). Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining. Acta Physiol. Scand. 161, 439-445 https://doi.org/10.1046/j.1365-201X.1997.00244.x
  35. Linzer, D.I., and Levine, A.J. (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43-52 https://doi.org/10.1016/0092-8674(79)90293-9
  36. Liu, C., Kronenberg, M., Jiang, X., Rowe, D., and Hadjiargyrou, M. (2007). Characterization of Mustn1 PRO-GFPtpz transgenic mice, pp. 13-14
  37. Lynch, G.S., and Ryall, J.G. (2008). Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol. Rev. 88, 729-767 https://doi.org/10.1152/physrev.00028.2007
  38. Mahajan, M.A., Murray, A., Levy, D., and Samuels, H.H. (2007). Nuclear receptor coregulator (NRC): mapping of the dimerization domain, activation of p53 and STAT-2, and identification of the activation domain AD2 necessary for nuclear receptor signaling. Mol. Endocrinol. 21, 1822-1834 https://doi.org/10.1210/me.2005-0529
  39. Malik, S., and Roeder, R.G. (2000). Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci. 25, 277-283 https://doi.org/10.1016/S0968-0004(00)01596-6
  40. McTavish, N., Copeland, L.A., Saville, M.K., Perkins, N.D., and Spruce, B.A. (2007). Proenkephalin assists stress-activated apoptosis through transcriptional repression of NF-kappaB- and p53-regulated gene targets. Cell Death Differ. 14, 1700-1710 https://doi.org/10.1038/sj.cdd.4402172
  41. Moolenaar, W.H. (1995). Lysophosphatidic acid, a multifunctional phospholipid messenger. J. Biol. Chem. 270, 12949-12952 https://doi.org/10.1074/jbc.270.22.12949
  42. Moon, J.K., Kim, K.S., Kim, J.J., Choi, B.H., Cho, B.W., Kim, T.H., and Lee, C.K. (2009). Differentially expressed transcripts in adipose tissue between Korean native pig and Yorkshire breeds. Anim. Genet. 40, 115-118 https://doi.org/10.1111/j.1365-2052.2008.01798.x
  43. Murphy, M., Hinman, A., and Levine, A.J. (1996). Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 10, 2971-2980 https://doi.org/10.1101/gad.10.23.2971
  44. Nadon, R., and Shoemaker, J. (2002). Statistical issues with microarrays: processing and analysis. Trends Genet. 18, 265-271 https://doi.org/10.1016/S0168-9525(02)02665-3
  45. Narayan, N., Massimi, P., and Banks, L. (2009). CDK phosphorylation of the discs large tumour suppressor controls its localisation and stability. J. Cell Sci. 122, 65-74 https://doi.org/10.1242/jcs.024554
  46. Nedivi, E., Wu, G.Y., and Cline, H.T. (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281, 1863-1866 https://doi.org/10.1126/science.281.5384.1863
  47. Omwancha, J., Zhou, X.F., Chen, S.Y., Baslan, T., Fisher, C.J., Zheng, Z., Cai, C., and Shemshedini, L. (2006). Makorin RING finger protein 1 (MKRN1) has negative and positive effects on RNA polymerase II-dependent transcription. Endocrine 29, 363- 373 https://doi.org/10.1385/ENDO:29:2:363
  48. Qi, R.Z., Ching, Y.P., Kung, H.F., and Wang, J.H. (2004) alpha- Chimaerin exists in a functional complex with the Cdk5 kinase in brain. FEBS Lett. 561, 177-180 https://doi.org/10.1016/S0014-5793(04)00174-7
  49. Schabort, E.J., van der Merwe, M., Loos, B., Moore, F.P., and Niesler, C.U. (2009). TGF-beta's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner. Exp. Cell Res. 315, 373-384 https://doi.org/10.1016/j.yexcr.2008.10.037
  50. Seale, P., Ishibashi, J., Holterman, C., and Rudnicki, M.A. (2004). Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell. Dev. Biol. 275, 287-300 https://doi.org/10.1016/j.ydbio.2004.07.034
  51. Srikakulam, R., Liu, L., and Winkelmann, D.A. (2008). Unc45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS ONE 3, e2137
  52. Sugiura, N., Dadashev, V., and Corriveau, R.A. (2004). NARG2 encodes a novel nuclear protein with (S/T)PXX motifs that is expressed during development. Eur. J. Biochem. 271, 4629-4637 https://doi.org/10.1111/j.1432-1033.2004.04414.x
  53. Takeda, K., Yu, Z.X., Qian, S., Chin, T.K., Adelstein, R.S., and Ferrans, V.J. (2000). Nonmuscle myosin II localizes to the Zlines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil. Cytoskeleton 46, 59-68 https://doi.org/10.1002/(SICI)1097-0169(200005)46:1<59::AID-CM6>3.0.CO;2-Q
  54. Tomasini, R., Samir, A.A., Carrier, A., Isnardon, D., Cecchinelli, B., Soddu, S., Malissen, B., Dagorn, J.C., Iovanna, J.L., and Dusetti, N.J. (2003). TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J. Biol. Chem. 278, 37722-37729 https://doi.org/10.1074/jbc.M301979200
  55. Tsai, S., Cassady, J.P., Freking, B.A., Nonneman, D.J., Rohrer, G.A., and Piedrahita, J.A. (2006). Annotation of the Affymetrix porcine genome microarray. Anim. Genet. 37, 423-424 https://doi.org/10.1111/j.1365-2052.2006.01460.x
  56. Walsh, C.T., Radeff-Huang, J., Matteo, R., Hsiao, A., Subramaniam, S., Stupack, D., and Brown, J.H. (2008). Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteinerich protein 61. FASEB J. 22, 4011-4021 https://doi.org/10.1096/fj.08-113266
  57. Weber, A., Pennise, C.R., Babcock, G.G., and Fowler, V.M. (1994). Tropomodulin caps the pointed ends of actin-filaments. J. Cell Biol. 127, 1627-1635 https://doi.org/10.1083/jcb.127.6.1627
  58. Yamamoto, H., Tsukahara, K., Kanaoka, Y., Jinno, S., and Okayama, H. (1999). Isolation of a mammalian homologue of a fission yeast differentiation regulator. Mol. Cell. Biol. 19, 3829- 3841 https://doi.org/10.1128/MCB.19.5.3829
  59. Zhao, J., Zhang, X., Shi, M., Xu, H., Jin, J., Ni, H., Yang, S., Dai, J., Wu, M., and Guo, Y. (2006). TIP30 inhibits growth of HCC cell lines and inhibits HCC xenografts in mice in combination with 5- FU. Hepatology 44, 205-215 https://doi.org/10.1002/hep.21213

Cited by

  1. Quantitative gene expression analysis on chromosome 6 between Korean native pigs and Yorkshire breeds for fat deposition vol.32, pp.4, 2009, https://doi.org/10.1007/s13258-010-0009-6
  2. Analysis of gene expression profiles from subcutaneous adipose tissue of two pig breeds vol.33, pp.6, 2009, https://doi.org/10.1007/s13258-011-0083-4
  3. Differences in Hepatic Gene Expression as a Major Distinguishing Factor between Korean Native Pig and Yorkshire vol.75, pp.3, 2009, https://doi.org/10.1271/bbb.100625
  4. Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies vol.38, pp.6, 2009, https://doi.org/10.1007/s11033-010-0496-1
  5. Porcine Fatty Acid Synthase Gene Polymorphisms Are Associated with Meat Quality and Fatty Acid Composition vol.31, pp.3, 2011, https://doi.org/10.5851/kosfa.2011.31.3.356
  6. 돼지 Melanocortin 4 Receptor (MC4R) 유전자의 육질연관성 분석 vol.54, pp.1, 2012, https://doi.org/10.5187/jast.2012.54.1.1
  7. Comparison of Live Performance and Meat Quality Parameter of Cross Bred (Korean Native Black Pig and Landrace) Pigs with Different Coat Colors vol.26, pp.7, 2009, https://doi.org/10.5713/ajas.2013.13005
  8. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits vol.6, pp.None, 2009, https://doi.org/10.1038/srep38932
  9. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs vol.18, pp.None, 2009, https://doi.org/10.1186/s12864-017-4201-9
  10. Mustn1 : A Developmentally Regulated Pan-Musculoskeletal Cell Marker and Regulatory Gene vol.19, pp.1, 2009, https://doi.org/10.3390/ijms19010206
  11. Association Analysis of Single-Cell RNA Sequencing and Proteomics Reveals a Vital Role of Ca 2+ Signaling in the Determination of Skeletal Muscle Development Potential vol.9, pp.4, 2020, https://doi.org/10.3390/cells9041045