• 제목/요약/키워드: Skeletal Muscles

검색결과 322건 처리시간 0.026초

Changes in expression of the autophagy-related genes microtubule-associated protein 1 light chain 3β and autophagy related 7 in skeletal muscle of fattening Japanese Black cattle: a pilot study

  • Nakanishi, Tomonori;Tokunaga, Tadaaki;Ishida, Takafumi;Kobayashi, Ikuo;Katahama, Yuta;Yano, Azusa;Erickson, Laurie;Kawahara, Satoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.592-598
    • /
    • 2019
  • Objective: Autophagy is a bulk degradation system for intracellular proteins which contributes to skeletal muscle homeostasis, according to previous studies in humans and rodents. However, there is a lack of information on the physiological role of autophagy in the skeletal muscle of meat animals. This study was planned as a pilot study to investigate changes in expression of two major autophagy-related genes, microtubule-associated protein 1 light chain $3{\beta}$ (MAP1LC3B) and autophagy related 7 (ATG7) in fattening beef cattle, and to compare them with skeletal muscle growth. Methods: Six castrated Japanese Black cattle (initial body weight: $503{\pm}20kg$) were enrolled in this study and fattened for 7 months. Three skeletal muscles, M. longissimus, M. gluteus medius, and M. semimembranosus, were collected by needle biopsy three times during the observation period, and mRNA levels of MAP1LC3B and ATG7 were determined by quantitative reverse-transcription polymerase chain reaction. The expression levels of genes associated with the ubiquitin-proteasome system, another proteolytic mechanism, were also analyzed for comparison with autophagy-related genes. In addition, ultrasonic scanning was repeatedly performed to measure M. longissimus area as an index of muscle growth. Results: Our results showed that both MAP1LC3B and ATG7 expression increased over the observation period in all three skeletal muscles. Interestingly, the increase in expression of these two genes in M. longissimus was highly correlated with ultrasonic M. longissimus area and body weight. On the other hand, the expression of genes associated with the ubiquitin-proteasome system was unchanged during the same period. Conclusion: These findings suggest that autophagy plays an important role in the growth of skeletal muscle of fattening beef cattle and imply that autophagic activity affects meat productivity.

닭 조직에 따른 Nebulin Isoform 단백질의 특이적 발현 (Tissue-Specific Expression of Nebulin Isoform Proteins in Chicken)

  • 김영희;김정락
    • 대한의생명과학회지
    • /
    • 제6권3호
    • /
    • pp.171-179
    • /
    • 2000
  • 대부분 척추동물에서 골격근 내 filament들의 길이 조절은 근 수축 기작의 구조를 이해하는데 중요한 단서가 된다. Nebulin은 thin filament의 전체에 걸쳐있는 거대한 단백질로 골격근에만 특이적으로 존재하는 것으로 알려져 왔다. 본 연구에서는 닭의 근육과 비근육 조직에서 nebulin isoform단백질들을 확인하기 위하여 전기영동과 immunoblot의 방법을 이용하였다. 각 조직의 단백질들은 soluble과 insoluble fraction으로 분리 준비하였다. 실험결과, 닭의 근육과 비근육 조직들에서 조직 특이성을 나타내는 다양한 nebulin isoform 단백질들이 확인되었다. Nebulin은 성계의 골격근에서 500 kDa 정도의 크기로 나타났고, nebulett은 계배와 성계의 심장근에서 107 kDa 정도로 발현되었다. 그리고 계배의 비근육 조직인 뇌에서 380 kDa 정도의 거대 단백질이 확인되었다. 이 단백질은 뇌 조직의 soluble fraction에서 인지되었다. Nebulin isoform 단백질들이 서로 다른 조직에서 발현되는 양상을 보아 서로 다른 독자적인 기능을 가질 것으로 추정된다.

  • PDF

Ginsenoside Rg1 augments oxidative metabolism and anabolic response of skeletal muscle in mice

  • Jeong, Hyeon-Ju;So, Hyun-Kyung;Jo, Ayoung;Kim, Hye-Been;Lee, Sang-Jin;Bae, Gyu-Un;Kang, Jong-Sun
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.475-481
    • /
    • 2019
  • Background: The ginsenoside Rg1 has been shown to exert various pharmacological activities with health benefits. Previously, we have reported that Rg1 promoted myogenic differentiation and myotube growth in C2C12 myoblasts. In this study, the in vivo effect of Rg1 on fiber-type composition and oxidative metabolism in skeletal muscle was examined. Methods: To examine the effect of Rg1 on skeletal muscle, 3-month-old mice were treated with Rg1 for 5 weeks. To assess muscle strength, grip strength tests were performed, and the lower hind limb muscles were harvested, followed by various detailed analysis, such as histological staining, immunoblotting, immunostaining, and real-time quantitative reverse transcription polymerase chain reaction. In addition, to verify the in vivo data, primary myoblasts isolated from mice were treated with Rg1, and the Rg1 effect on myotube growth was examined by immunoblotting and immunostaining analysis. Results: Rg1 treatment increased the expression of myosin heavy chain isoforms characteristic for both oxidative and glycolytic muscle fibers; increased myofiber sizes were accompanied by enhanced muscle strength. Rg1 treatment also enhanced oxidative muscle metabolism with elevated oxidative phosphorylation proteins. Furthermore, Rg1-treated muscles exhibited increased levels of anabolic S6 kinase signaling. Conclusion: Rg1 improves muscle functionality via enhancing muscle gene expression and oxidative muscle metabolism in mice.

물리적자극이 좌골신경 절단 마우스의 골격근에 미치는 영향 (Effect of Physical Irritation on The Skeletal Muscles of Sciatic Nerve Neurectomized ddY Mice)

  • 김철용
    • 대한물리치료과학회지
    • /
    • 제10권2호
    • /
    • pp.216-225
    • /
    • 2003
  • To demonstrate the effect of physical irritancy(massages) on the skeletal muscles of immobilization ddY mice models induced by right side sciatic nerve neurectomy, the cross sectional histological profiles of the muscularis (M) gastrocnemius, M. tibialis cranialis and M. tibialis caudalis were observed after 28 days of treatment of physical irritancy with the changes of body weight thickness of hind limb and individual muscle weights. In addition, changes of demonstrated with diameter of individual muscle fiber and muscle fasciculata, and number of muscle fiber in each of three types of muscles located in the calf. The massages were used in this study as physical irritancy. The experimental groups were divided into five groups, 1) Sham-operated group(Sham), 2) Neurectomized but not physical irritated control group(Control), 3) Neurectomized and physical irritated at knee pint regions(T1), 4) Neurectomized and physical irritated at calf regions(T2), and 5) Neurectomized and physical irritated at achilles tendon regions(T3). The experimental animals were used 5 per groups. The changes of number or diameter of muscle fiber in each muscles were calculated using automated image analyzer. The results are as follow : Thickness(diameter) of muscle fiber of M. gastrocnemius, M. tibialis cranialis and M. tibialis cranialis in right side of hind limb were remarkedly decreased in Control, T1, T2 and T3 groups compared to that of Sham group. However, the thickness was significantly increased in physical irritated groups compared to that of Control group in followed order : T3

  • PDF

Ginsenoside Re가 골격근의 고지방식 유도 인슐린 저항성에 미치는 영향 (The Effects of Ginsenoside Re on High-Fat Diet induced Insulin Resistance in Muscle)

  • 정수련
    • 운동영양학회지
    • /
    • 제14권2호
    • /
    • pp.75-80
    • /
    • 2010
  • We evaluated the effect of the ginsenoside Re on insulin resistance of glucose transport in muscles of rats made insulin resistant with a high fat diet. After a week of adaptation period to the laboratory environment, 40 male wistar rats were randomly assigned into 2 groups (Chow diet group; CD, n = 20, High fat diet group; HFD, n = 20). After 5-week of high fat diet, Food was removed after 6:00 PM the day before the experiment. The following morning, rats were anesthetized by an intraperitoneal injection of pentobarbital sodium (50 mg/kg body wt), and the soleus muscles were removed. Before incubation, the soleus muscle was split longitudinally into strips with an average weight of 15~20 mg. After the muscle dissection was completed, the abdominal cavity was opened, and the epididymal, mesenteric, and retroperitoneal fat pads were removed and weighed. Treatment of muscles with ginsenoside Re alone had no effect on glucose transport. The high fat diet resulted in ~50% decreases glucose transport rate in soleus muscles. Treatment of muscles with ginsenoside Re in vitro for 90 min completely reversed the high fat diet-induced insulin resistance of glucose transport in soleus muscles. This effect of ginsenoside Re is specific for insulin stimulated glucose transport, as Re treatment did not reverse the high fat diet-induced resistance of skeletal muscle glucose transport to stimulation by contraction. Our results show that the ginsenoside Re induces a remarkably rapid reversal of high fat diet-induced insulin resistance of muscle glucose transport.

Muscle Fiber Typing in Bovine and Porcine Skeletal Muscles Using Immunofluorescence with Monoclonal Antibodies Specific to Myosin Heavy Chain Isoforms

  • Song, Sumin;Ahn, Chi-Hoon;Kim, Gap-Don
    • 한국축산식품학회지
    • /
    • 제40권1호
    • /
    • pp.132-144
    • /
    • 2020
  • The aim of this study was to optimize staining procedures for muscle fiber typing efficiently and rapidly in bovine and porcine skeletal muscles, such as longissimus thoracis, psoas major, semimembranosus, and semitendinosus muscles. The commercially available monoclonal anti-myosin heavy chain (MHC) antibodies and fluorescent dye-conjugated secondary antibodies were applied to immunofluorescence histology. Two different procedures, such as cocktail and serial staining, were adopted to immunofluorescence analysis. In bovine muscles, three pure types (I, IIA, and IIX) and one hybrid type, IIA+IIX, were identified by the cocktail procedure with a combination of BA-F8, SC-71, BF-35, and 6H1 anti-MHC antibodies. Porcine muscle fibers were typed into four pure types (I, IIA, IIX, and IIB) and two hybrid types (IIA+IIX and IIX+IIB) by a serial procedure with a combination of BA-F8, SC-71, BF-35, and BF-F3. Unlike for bovine muscle, the cocktail procedure was not recommended in porcine muscle fiber typing because of the abnormal reactivity of SC-71 antibody under cocktail procedure. Within the four antibodies, combinations of two or more anti-MHC antibodies allowed us to distinguish pure fiber types or all fiber types including hybrid types. Application of other secondary antibodies conjugated with different fluorescent dyes allowed us to get improved image resolution that clearly distinguished hybrid fibers. Muscle fiber characteristics differed depending on species and muscle types.

성인에서 골격형 III급 부정교합자와 정상교합자의 근활성도에 관한 연구 (AN ELECTROMYOGRAPHIC STUDY OF MUSCLE ACTIVITY IN NORMAL OCCLUSION AND SKELETAL CLASS III MALOCCLUSION IN ADULT)

  • 김택수;손병화
    • 대한치과교정학회지
    • /
    • 제22권3호
    • /
    • pp.627-646
    • /
    • 1992
  • The purpose of this study was to investigate the relationship among the activity of the craniofacial muscle and craniofacial form and occlusal state. In this study, subjects were consisted of 23 male adults with skeletal Class III malocclusion and 30 male adults with normal occlusion. The measurements in oral exam, lateral ceghalogram, and E.M.G. recordings of anterior temporal, masseter, and upper lip muscles at rest position, clenching in centric occlusion, chewing of gum, swallowing of juice, were analyzed with SPSS system. The results were as follows: 1. At rest position upper lip muscle activity of skeletal Class III group was significantly higher than that of normal group. 2. Both clenching and chewing masseter and temporal muscle activity of normal group were significantly higher than that of skeletal Class III group. 3. During swallowing of juice, upper lip muscle activity of skeletal Class III group were significantly higher than that of normal group. 4. The activities of masseter and anterior temporal muscle during clenching and chewing were significantly correlated with hypodivergent facial form and number of occluded teeth. 5. The activity of upper lip during swallowing had positive correlation with mandibular prognathism.

  • PDF

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권3호
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.

Temporal Pattern of cAMP Concentrations and α-Actin mRNA Expression in Skeletal Muscle of Cimaterol-Fed Rats

  • Kim, Y.S.;Duguies, M.V.;Kim, Y.H.;Vincent, D.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권5호
    • /
    • pp.528-533
    • /
    • 1997
  • Twenty four female Sprague-Dawley rats weighing about 190 g were used to examine changes in muscle cAMP concentrations and steady-state levels of skeletal muscle ${\alpha}$-actin mRNA during chronic administration of cimaterol, a ${\beta}$-adrenergic agonist. Cimaterol was mixed in a powdered rat diet at 10 mg/kg diet. At 3 and 21 days after the start of treatment, skeletal muscle and heart samples were collected for the measurement of cAMP concentrations and skeletal muscle ${\alpha}$-actin mRNA levels. Cimaterol increased (p < 0.01) body weight gain gradually during the first seven days of the trial period, but not thereafter. Most skeletal muscle weights and the ratio of muscle weight to body weight were increased (p < 0.05) by cimaterol treatment both at 3 and 21 days. Heart weight was also increased (p < 0.05) by cimaterol treatment at 3 and 21 days, but the ratio of heart weight to body weight was increased (p < 0.05) only at 3 day. Cimaterol decreased (p < 0.05) cAMP concentration of gastrocnemius muscle at both 3 and 21 days after treatment. However, cimaterol tended (p = 0.07) to increase cAMP concentration at 3 days in the heart. Cimaterol tended (p = 0.08) to increase the steady-state level of ${\alpha}$-actin mRNA by 60% in gastrocnemius muscle at 3 days but had no effect at 21 days. The results indicate that the pattern of hypertrophic response to chronic dietary administration of cimaterol is different between cardiac and skeletal muscle. In skeletal muscles it appears that the hypertrophy induced by cimaterol is partly due to stimulated myofibrillar protein synthesis at a pre-translational level.

Comparison of the Muscle Damage and Liver Function in Ultra-Marathon Race (100 km) by Sections

  • Shin, Kyung-A;Kim, Young-Joo
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.276-282
    • /
    • 2012
  • High-intensive endurance exercises induce cell changes in body, changes in structures and functions of the heart, the muscles, the cartilages, and the liver, as well as increase of inflammatory cytokine. The purpose of this study was to estimate the biochemical changes in the liver and muscles during ultra-marathon race (100 km) by sections. The blood of the subjects was collected before the marathon as a control in order to analyze serum creatine kinase (CK), lactic dehydrogenase (LDH), asprtate aminotransferase (AST), alanine aminotransferase (ALT), total(T)-bilirubin, direct(D)-bilirubin, total protein, albumin, uric acid, gamma-glutamyltranspeptidase (${\gamma}$-GTP), alkaline phosphatase (ALP), creatinine, blood urea nitrogen (BUN), and high sensitive C-reactive protein (hs-CRP) concentrations. The CK, LDH, D-bilirubin, AST and ALT concentrations at 50 km and 100 km were significantly increased compared to the control (P<0.05). The markers at 100 km were higher than those at 50 km (P<0.05). The T-bilirubin and hs-CRP concentrations showed no difference among the groups, whereas the markers at 100 km were higher than those of the control and at 50 km (P<0.05). In conclusion, this study shows that the ultra-marathon race (100 km) may induce the damage of the skeletal muscle, liver and kidney, intravascular hemolysis and inflammatory responses.