References
- Ji CH, Kwon YT. Crosstalk and interplay between the ubiquitinproteasome system and autophagy. Mol Cells 2017;40:441-9. https://doi.org/10.14348/molcells.2017.0115
- Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147:728-41. https://doi.org/10.1016/j.cell.2011.10.026
- Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010;140:313-26. https://doi.org/10.1016/j.cell.2010.01.028
- Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci 2017;18:1865. https://doi.org/10.3390/ijms18091865
- Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17:1807-19. https://doi.org/10.1681/ASN.2006010083
- White E. The role for autophagy in cancer. J Clin Invest 2015;125:42-6. https://doi.org/10.1172/JCI73941
- Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007;6:472-83. https://doi.org/10.1016/j.cmet.2007.11.004
- Wang X, Blagden C, Fan J, et al. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev 2005;19:1715-22. https://doi.org/10.1101/gad.1318305
- Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 2013;45:2121-9. https://doi.org/10.1016/j.biocel.2013.04.023
- Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab 2009;10:507-15. https://doi.org/10.1016/j.cmet.2009.10.008
- Koohmaraie M, Kent MP, Shackelford SD, Veiseth E, Wheeler TL. Meat tenderness and muscle growth: is there any relationship? Meat Sci 2002;62:345-52. https://doi.org/10.1016/S0309-1740(02)00127-4
- Jomane FN, Ishida T, Tokunaga T, Morita T. Variations in genes involved in fat metabolism and their association with ultrasonic and carcass traits in Japanese Black steers. Anim Sci J 2017;88:413-20. https://doi.org/10.1111/asj.12650
- Wang YH, Byrne KA, Reverter A, et al. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm Genome 2005;16:201-10. https://doi.org/10.1007/s00335-004-2419-8
- Perkins TL, Green RD, Hamlin KE. Evaluation of ultrasonic estimates of carcass fat thickness and longissimus muscle area in beef cattle. J Anim Sci 1992;70:1002-10. https://doi.org/10.2527/1992.7041002x
- Obara K, Ohsumi Y. PtdIns 3-kinase orchestrates autophagosome formation in yeast. J Lipids 2011;2011:498768.
- Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 2016;49:424-30. https://doi.org/10.5483/BMBRep.2016.49.8.081
- Chiramel AI, Brady NR, Bartenschlager R. Divergent roles of autophagy in virus infection. Cells 2013;2:83-104. https://doi.org/10.3390/cells2010083
- Sanchez AM. Autophagy regulation in human skeletal muscle during exercise. J Physiol 2016;594:5053-4. https://doi.org/10.1113/JP272993
- Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 2008;9:859-64. https://doi.org/10.1038/embor.2008.163
- Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010;22:124-31. https://doi.org/10.1016/j.ceb.2009.11.014
- Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 2013;43:12-21. https://doi.org/10.1007/s12020-012-9751-7
- Rajan VR, Mitch WE. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol 2008;23:527-35. https://doi.org/10.1007/s00467-007-0594-z
- Raben N, Hill V, Shea L, et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 2008;17:3897-908. https://doi.org/10.1093/hmg/ddn292
- Mann S, Abuelo A, Nydam DV, et al. Insulin signaling and skeletal muscle atrophy and autophagy in transition dairy cows either overfed energy or fed a controlled energy diet prepartum. J Comp Physiol B 2016;186:513-25. https://doi.org/10.1007/s00360-016-0969-1
- Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013;280:4294-314. https://doi.org/10.1111/febs.12253
- Onodera J, Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 2005;280:31582-6. https://doi.org/10.1074/jbc.M506736200
- Fukuda SI. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J Biochem 2018;163:353-8. https://doi.org/10.1093/jb/mvy019
- Blaauw B, Canato M, Agatea L, et al. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 2009;23:3896-905. https://doi.org/10.1096/fj.09-131870
- Fiacco E, Castagnetti F, Bianconi V, et al. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 2016;23:1839-49. https://doi.org/10.1038/cdd.2016.70
- Sanchez AM, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014;307:R956-69. https://doi.org/10.1152/ajpregu.00187.2014
- Hannigan AM, Gorski SM. Macroautophagy: the key ingredient to a healthy diet? Autophagy 2009;5:140-51. https://doi.org/10.4161/auto.5.2.7529
- Ju JS, Varadhachary AS, Miller SE, Weihl CC. Quantitation of "autophagic flux" in mature skeletal muscle. Autophagy 2010;6:929-35. https://doi.org/10.4161/auto.6.7.12785