• Title/Summary/Keyword: Skeletal Muscle Satellite Cell

Search Result 23, Processing Time 0.022 seconds

Development of a High-Yield Isolation Protocol Optimized for the Retrieval of Active Muscle Satellite Cells from Mouse Skeletal Muscle Tissue

  • Hyun Lee;Na Rae Han;Seong Jae Kim;Jung Im Yun;Seung Tae Lee
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.283-290
    • /
    • 2022
  • Background and Objectives: Difficulties often encountered in separating and purifying active muscle satellite cells (MSCs) from skeletal muscle tissues have limited the supply of cells for muscle therapy and artificial meat production. Here, we report an effective isolation protocol to economically and conveniently retrieve active MSCs from skeletal muscle tissues in mice. Methods and Results: We optimized an enzyme-based tissue digestion protocol for isolating skeletal muscle-derived primary cell population having a large number of active MSCs and described a method of differential plating (DP) for improving purity of active MSCs from skeletal muscle-derived primary cell population. Then, the age of the mouse appropriate to the isolation of a large number of active MSCs was elucidated. The best isolation yield of active MSCs from mouse skeletal muscle tissues was induced by the application of DP method to the primary cell population harvested from skeletal muscle tissues of 2-week-old mice digested in 0.2% (w/v) collagenase type II for 30 min at 37℃ and then in 0.1% (w/v) pronase for 5 min at 37℃. Conclusions: The protocol we developed not only facilitates the isolation of MSCs but also maximizes the retrieval of active MSCs. Our expectation is that this protocol will contribute to the development of original technologies essential for muscle therapy and artificial meat industrialization in the future.

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.

Visualization of the physical characteristics of collective myoblast migration upon skeletal muscle injury and regeneration environment (골격근 손상 및 재생 환경에서의 근육 세포 군집 이동의 물리적 특성 가시화)

  • Kwon, Tae Yoon;Jeong, Hyuntae;Cho, Youngbin;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Skeletal muscle tissues feature cellular heterogeneity, including differentiated myofibers, myoblasts, and satellite cells. Thanks to the presence of undifferentiated myoblasts and satellite cells, skeletal muscle tissues can self-regenerate after injury. In skeletal muscle regeneration, the collective motions among these cell types must play a significant role, but little is known about the dynamic collective behavior during the regeneration. In this study, we constructed in vitro platform to visualize the migration behavior of skeletal muscle cells in specific conditions that mimic the biochemical environment of injured skeletal muscles. We then visualized the spatiotemporal distribution of stresses arising from the differential collectiveness in the cellular clusters under different conditions. From these analyses, we identified that the heterogeneous population of muscle cells exhibited distinct collective migration patterns in the injury-mimicking condition, suggesting selective activation of a specific cell type by the biochemical cues from the injured skeletal muscles.

Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells (저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과)

  • Kwag, J.H.;Jeon, O.H.;Kang, D.Y.;Ryu, H.H.;Kim, K.H.;Jung, B.J.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.

Sarcopenia targeting with autophagy mechanism by exercise

  • Park, Sung Sup;Seo, Young-Kyo;Kwon, Ki-Sun
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • The loss of skeletal muscle, called sarcopenia, is an inevitable event during the aging process, and significantly impacts quality of life. Autophagy is known to reduce muscle atrophy caused by dysfunctional organelles, even though the molecular mechanism remains unclear. Here, we have discuss the current understanding of exercise-induced autophagy activation in skeletal muscle regeneration and remodeling, leading to sarcopenia intervention. With aging, dysregulation of autophagy flux inhibits lysosomal storage processes involved in muscle biogenesis. AMPK-ULK1 and the $FoxO/PGC-1{\alpha}$ signaling pathways play a critical role in the induction of autophagy machinery in skeletal muscle, thus these pathways could be targets for therapeutics development. Autophagy has been also shown to be a critical regulator of stem cell fate, which determines satellite cell differentiation into muscle fiber, thereby increasing muscle mass. This review aims to provide a comprehensive understanding of the physiological role of autophagy in skeletal muscle aging and sarcopenia.

Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

  • Li, Bo-jiang;Li, Ping-hua;Huang, Rui-hua;Sun, Wen-xing;Wang, Han;Li, Qi-fa;Chen, Jie;Wu, Wang-jun;Liu, Hong-lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1171-1177
    • /
    • 2015
  • The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

Transcriptomic Analysis of the Difference of Bovine Satellite Cell Between Longissimus dorsi and Semimembranosus on Hanwoo Muscle Tissues (한우의 등심과 사태조직 유래 근육위성세포의 성장단계별 유전발현 차이 분석)

  • Kim, H.J.;Kang, D.H.;Park, B.H.;Lee, W.Y.;Choi, J.H.;Chung, K.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2021
  • The skeletal muscle development of Hanwoo steer has been processed in the prenatal and postnatal periods. Bovine satellite cell located in perimysium of muscle tissues has differentially distributed in peripheral tissues. The study of postnatal development of satellite cells can help understand the genetic and functional regulation of meat characteristics. Factors affecting muscle size increase are related to the accumulation of DNA or synthesis of RNA proteins. In this study, we observed muscle development and differentiation after culturing bovine satellite cells derived from longissimus dorsi and semimembranosus regions of Hanwoo muscle tissue. In addition, RNA sequencing data were analyzed for differentially expressed genes (DEG) involved in intracellular muscle development and growth. The DEG of the two muscle tissues were compared according to 1day, 2day, 4day, and 7day. The overall gene expression level was confirmed by the heat map. Gene Ontology (GO) classification method was used to compare the expression level of gene groups affecting LD and SM development. The histology of GO was consistent with the time-cause change of LD and SM cell morphology. SM showed more active skeletal muscle development than LD. Even within the same time, SM expressed more genes than LD, thus synthesizing more muscle fibers

Diversity of contractile properties in skeletal muscle fibers (골격근 섬유의 수축성 특성의 다양성)

  • Kim, Sik-hyun
    • PNF and Movement
    • /
    • v.2 no.1
    • /
    • pp.35-47
    • /
    • 2004
  • Purpose : The purpose of this article was to review the literature on contractile properties of skeletal muscle with reference to its molecular and functional diversity. Method : This review outlines scientific findings regarding different contractile properties in skeletal muscle fibers, and discusses their involvement in functional diversity. Result & Conclusions: Muscle fibers possess distinct mechanical and energetic properties. Myosis, one of the primary contractile muscle proteins, displays structural, functional variability and plays the role of the molecular motor of muscle contraction. Muscle satellite cells are normally mitotically quiescent, but initiate proliferation and give rise to daughter myogenic precursor cells as required for the postnatal growth and regeneration of adult muscle. Passive extensibility is an important component of total muscle function because it allows for the maximal length of skeletal muscles. Proprioceptive neuromuscular facilitation(PNF) stretching can help to restore or improve flexibility and coordination, thereby improving overall muscle function.

  • PDF

Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene

  • Wang, Han;He, Ke;Zeng, Xuehua;Zhou, Xiaolong;Yan, Feifei;Yang, Songbai;Zhao, Ayong
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1078-1087
    • /
    • 2021
  • Objective: Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods: Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results: The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion: These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.

Identification of Cuts-specific Myogenic Marker Genes in Hanwoo by DNA Microarray (DNA Microarray 분석을 통한 한우 부위별 특이 마커 유전자의 발굴)

  • Lee, Eun-Ju;Shin, Yu-Mi;Lee, Hyun-Jeong;Yoon, Du-Hak;Chun, Tae-Hoon;Lee, Yong-Seok;Choi, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.329-336
    • /
    • 2010
  • Myogenic satellite cells (MSCs) are mononuclear, multipotent progenitors of adult skeletal muscle possessing a capacity of forming adipocyte-like cells (ALC). To identify the skeletal muscle type-specific myogenic and adipogenic genes during MSCs differentiation, total RNA was extracted from bovine MSCs, myotube-formed cell (MFC), and ALC from each of Beef shank, Longissimus dorsi, Deep pectoral, and Semitendinosus. DNA microarray analysis (24,000 oligo chip) comparing MSCs with MFC and ALC, respectively, revealed 135 differentially expressed genes (> 4 fold) among four cuts. Real-time PCR confirmed expression of 29 genes. Furthermore, the whole tissue sample RNAs analysis showed 6 differentially expressed genes in Beef shank. Among which, 1 gene in MSCs, 4 in MFC, and 1 in ALCs were highly expressed. This study will provide an insight for better understanding the molecular mechanism of differentiation of skeletal muscle type-specific MSCs. The identified genes may be used as marker to distinguish skeletal muscle types.