• Title/Summary/Keyword: Size separation

Search Result 967, Processing Time 0.105 seconds

Separation of Sb(Ⅲ) by the Silica Gel Bonded 15-crown-5 (15-crown-5가 결합된 Silica Gel을 이용한 Sb(Ⅲ)의 분리)

  • Kim, Hae-Joong;Kim, Jeong;Kim, Si-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.524-529
    • /
    • 1995
  • The separation efficiency of metal ions by using silica gel bonded 15-crown-5 (SGBM) has been determined by column chromatography in aqueous solution at pH 1. Bindinng constants and separation factors for several SGBM-Metal interactions were measured in aqueous solution. The order of these binding constants and separation factors with metal ions was Li(Ⅰ) < Sr(Ⅱ) < Na(Ⅰ) < Cu(Ⅱ) < Mg(Ⅱ) < K(Ⅰ) < Ca(Ⅱ) < Bi(Ⅲ) < Sb(Ⅲ). These results were explained in terms of the size effect and electron density effect. This experimental results showed good efficiency for separation of $Sb^{3+}$ from mixtures of alkali, alkaline earth metal ions, and $Cu^{2+}$ in aqueous solution.

  • PDF

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

A new equation based on PGA to provide sufficient separation distance between two irregular buildings in plan

  • Loghmani, Adel;Mortezaei, Alireza;Hemmati, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.543-553
    • /
    • 2020
  • Past earthquakes experience shows that serious damage or collapse of buildings have dramatically accrued when sufficient separation distance has not been provided between two adjacent structures. The majority of past studies related to the pounding topic indicate that obtaining the gap size between two buildings is able to prevent collision and impact hazards during seismic excitations. Considering minimization of building collisions, some relationships have been suggested to determine the separation distance between adjacent buildings. Commonly, peak lateral displacement, fundamental period and natural damping as well as structural height of two adjacent buildings are numerically considered to determine the critical distance. Hence, the aim of present study is to focus on all mentioned parameters and also utilizing the main characteristic of earthquake record i.e. PGA to examine the lateral displacement of irregular structures close to each other and also estimate the sufficient separation distance between them. Increasing and decreasing the separation distance is inherently caused economical problems due to the land ownership from a legal perspective and pounding hazard as well. Therefore, a new equation is proposed to determine the optimum critical distance. The accuracy of the proposed formula is validated by different models and various earthquake records.

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

Evaluation on Crack in Self-leveling Material and Investigation about Influence of Specimen Size - Evaluation Method about Surface Layer Quality of Concrete Floor Groundwork Corresponding to Defect in Self-leveling Material (Part I) - (콘크리트 바닥 시험체의 크기가 SL재의 균열에 미치는 영향 - SL재의 하자 발생에 영향을 미치는 콘크리트 표층부의 품질 평가방법(I) -)

  • Kim, Doo-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.2 s.24
    • /
    • pp.99-106
    • /
    • 2007
  • The purpose of this study presents in Relations between cracks in self-leveling material and quality of floor groundwork surface are experimentally examined. As the first stage, the experiment to observe cracks in self-leveling material constructed on floor groundwork made from various kinds of concrete was carried. As a result, following basic findings were obtained. First, observation of cracks should be continued until an increase in width of cracks stop, without constructing any finishing material. Second, degree of cracks may be indicated quantitatively by the product of length and width. Finally, Cracks and separation is not be influenced by specimen size. Based on these findings, the method of predicting cracks by evaluating surface layer quality of floor groundwork will be established.

A NUMERICAL ANALYSIS ON THE COLLISION BEHAVIOR OF WATER DROPLETS (액적 충돌 현상에 관한 수치해석)

  • Nam Hyun-Woo;Baek Je-Hyun
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.14-21
    • /
    • 2006
  • A numerical simulation of the binary collision dynamics of water drops for size ratios of 1 and 0.75, for the Weber number range of 5 to 100, and for all impact parameter is reported. Two different types of separating collisions, namely reflexive and stretching separations, are identified. A numerical method is based on a fractional-step method with a finite volume formulation and the interface is tracked with Volume of Fluid(VOF) method, including surface tension. Numerical results for size ratios 1 and 0.75 are reasonablely compared with Ashgriz and Poo's experimental results.

Development of functional microsphere(II) - Formation and Characteristics of Poly(ethylene-co-vinylacetate) Microsphere with Pigment - (기능성 마이크로스피어의 개발(II) - 안료를 함유한 에틸렌-비닐아세테이트 공중합체의 마이크로스피어 제조와 특성 -)

  • Lee, Shin-Hee;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.15-20
    • /
    • 2005
  • Poly(ethylene-co-vinylacetate)(EVA) microspheres were prepared by thermally induced phase separation in toluene. The microsphere formation occurred by the nucleation and growth mechanism in metastable region. The effects of the polymer or pigment weight percentage and cooling rate on microsphere formation were investigated. The microsphere formation and growth were followed by the cloud point of the optical microscope measurement. The microsphere size distribution, which was obtained by particle size analyzer, became broader when the polymer concentration was higher, the pigment concentration and the cooling rate of EVA copolymer solution were lower.

Development of Ceramic Composite Membranes for Gas Separation: I. Coating Characteristics of Nanoparticulate SiO2 Sols (기체분리용 세라믹 복합분리막의 개발: I. 극미세 입자 실리카 졸의 코팅 특성)

  • ;Marc A. Anderson
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.496-504
    • /
    • 1992
  • Alumina tubes suitable for the support of gas separation membranes have been prepared by the slipcasting technique. These supports have the average pore size of 0.1 ${\mu}{\textrm}{m}$ within the narrow distribution. The sol-gel dipcoating process of nanoparticulate sols is very sensitive to microstructure of the support, and the coating on the inside surface of the tube is found to be more successful than on the outside surface. Nanoparticulate silica sols (0.82 mol/ι) have been synthesized by an interfacial hydrolysis reaction between TEOS and high alkaline water. When coating an alumina tube with these sols, the minimum limits of the particle size and the aging time required for forming the coated gel layer at the given pH are provided. It is optimum to coat the support with less concentrated sols stabilized through aging for the appropriate time (more than 22 days) at the lower pH (pH 2.0) for producing a reproducible crack free thin film coating in composite membranes.

  • PDF

Preparation of Microporous Glasses by the Phase-Separation Technique and Their Salt-Rejection Characteristics (상분리법에 의한 다공질유리의 제조 및 탈염특성)

  • 현상훈;김계태
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.93-101
    • /
    • 1986
  • Microporous glasses were prepared from the 50 $SiO_2-44$ $B_2O_3-6$ $Na_2O$(wt%) parent glass by the phase eparation technique and were characterized by SEM, BET, and Gas Adsorption methods to investigate the possiblity of their use as salt-rejection membranes for reverse osmosis. The conditions of the phase separation for the possible glass membranes were optimized for the given parent glass. The temperature and duration of heat-treatment were desired to be lower(853K) and shorter (1/2~1 hr) respectively. The specific surface areas of porous glasses prepared in this study were about 80~120$m^2$/g and their pore size distribution had a unimodal shape(peak pore radius less than 15$\AA$) It was suggested that the porous glass obtained in this work could be effective for salt-rejection in point of pore size distributions but the way to increase its surface area for the high flux must be studied.

  • PDF

Hydrodynamic Explanation of the Mechanism of Interface Formation for Concentrated Suspensions (고농도 부유물의 침전시 계면현상 기구에 대한 수리통역학적 해석)

  • 한무영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.65-68
    • /
    • 1992
  • In characterizing a suspension, heterogenety is included onto the previous characterization using solids concentrations and flocculent characteristics, because of its importance in hydrodynamics. The mechanism of interface formation during the sedimentation of concentrated suspension (thickening) is investigated from a microcosm consisting of four particles in a same plane and a smaller particle below. The critical distances after shich interface forms are calculated as a function of particle size ratio when the small particle is located in the middle of the squre datermined by the large particles. The results shows that the critical separation distance increase as the size ratio approaches to one (homogeneous suspension). This conforms to the trend of existing observations that homogeneous suspensions create the solid-liquid interface at much lower concentration (at al larger separation distance) that the heterogeneous suspensions.

  • PDF