• Title/Summary/Keyword: Size selectivity

Search Result 295, Processing Time 0.023 seconds

Separation of Hydrogen-Nitrogen Gases by PTMSP-Borosilicate Composite Membranes (PTMSP-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.438-447
    • /
    • 2014
  • The amorphous and porous borosilicate without any cracks was obtained under the following condition : 0.01~ 0.10 mole ratio of trimethylborate (TMB)/ tetraethylorthosilicate (TEOS) and the temperature of $700{\sim}800^{\circ}C$. According to the BET and SEM measurements, borosilicate heat-treated in between 700 and $800^{\circ}C$ showed the surface area of $251.12{\sim}355.62m^2/g$, the pore diameter of 3.5~4.9 nm, and the particle size of 30~60 nm. According to the TGA measurements, the thermal stability of poly[1-(trimethylsilyl)propyne](PTMSP) membrane was enhanced by inserting borosilicate. SEM observation showed that the size of dispersed borosilicate in the composite membrane was $1{\mu}m$. The results showed that the permeability of $H_2$ and $N_2$ increased and the selectivity of $H_2/N_2$ decreased upon the addition of borosilicate into PTMSP membranes. Addition of borosilicate may possibly increase the free volume, cavity and porosity of membranes indicating that permeation occurred by molecular sieving, surface and Knudsen diffusion rather than solution diffusion of gases.

Synthesis of the Hydrocarbons from Methanol over ZSM-5 Zeolite Catalyst (ZSM-5 제올라이트 촉매상에서의 메탄올로부터 탄화수소 합성반응)

  • Sang Eon Park;Hak Ze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 1981
  • The conversion of methanol to hydrocarbons has been studied over synthetic ZSM-5 zeolite catalyst having high silica to alumina ratio. The conversion products were olefins, paraffins, cycloparaffins, and aromatics, and the catalyst showed especially high selectivity toward the formation of aromatics. The catalyst showed the shape-selectivity and the size of molecules in the product was limited approximately to the size of 1,3,5-trimethylbenzene. Hydrogen form(HZSM-5) was more active, indicating reactions following the dehydration of methanol seemed to be mainly catalyzed by acid sites. Comparison of the reaction characteristics and acid site distribution of the ZSM-5 catalyst with those of mordenite and faujasite type catalysts suggests that cross-linked pore channel structure and the strong acidity of the ZSM-5 catalyst are primarily responsible for the selective formation of aromatics over this catalyst.

  • PDF

Structure-Activity Relationships of 13- and 14-Membered Cyclic Partial Retro-Inverso Pentapeptides Related to Enkephalin

  • Hong, Nam-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.874-880
    • /
    • 2010
  • A series of 13- and 14-membered cyclic enkephalin analogs based on the moderately $\mu$ selective prototype compound Tyr-C[D-$A_2bu$-Gly-Phe-Leu] 8a were synthesized to investigate the structure-activity relationship. The modifications of sequence were mainly focused on two positions 3 and 5, critical for the selective recognition for $\mu$ and $\delta$ opioid receptors. The substitution of hydrophobic $Leu^5$ with hydrophilic $Asp^5$ derivatives led to Tyr-C[D-$A_2bu$-Gly-Phe-Asp(N-Me)] 7 and Tyr-C[D-Glu-Phe-gPhe-rAsp(O-Me)] 5, the peptides with a large affinity losses at both $\mu$ and $\delta$ receptors. The substitution of $Phe^3$ with $Gly^3$ led to Tyr-C[D-Glu-Gly-gPhe-rLeu] 3 and Tyr-C[D-Glu-Gly-gPhe-D-rLeu] 4, the peptides with large affinity losses at $\mu$ receptors, indicating the critical role of phenyl ring of $Phe^3$ for $\mu$ receptor affinities. One atom reduction of the ring size from 14-membered analogs Tyr-C[D-Glu-Phe-gPhe-(L and D)-rLeu] 6a, 6b to 13-membered analogs Tyr-C[D-Asp-Phe-gPhe-(L and D)-rLeu] 1, 2 reduced the affinity at both $\mu$ and $\delta$ receptors, but increased the potency in the nociceptive assay, indicating the ring constrain is attributed to high nociceptive potency of the analogs. For the influence of D- or L-chirality of $Leu^5$ on the receptor selectivity, regardless of chirality and ring size, all cyclic diastereomers displayed marked $\mu$ selectivity with low potencies at the $\delta$ receptor. The retro-inverso analogs display similar or more active at $\mu$ receptor, but less active at $\delta$ receptor than the parent analogs.

Catalytic Nitrate Reduction in Water over Nanosized TiO2 Supported Pd-Cu Catalysts (나노 크기의 타이타니아 담체를 활용한 Pd-Cu 촉매의 수중 질산성 질소 저감 반응에의 적용)

  • Kim, Min-Sung;Lee, Jiyeon;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • In this study, we synthesized $TiO_2$ supports with nanosized crystalline structure by solvothermal method and prepared $TiO_2$ supported Pd-Cu catalysts. It was shown that the crystalline size of $TiO_2$ support in the catalyst influenced on the catalytic activity of nitrate reduction in water. The catalyst with the smaller crystalline size of $TiO_2$ support presented faster nitrate reduction rate, but had low nitrogen selectivity due to high pH environment of reaction medium during the reaction. Through injection of carbon dioxide as a pH buffer, the nitrogen selectivity increased by about 60%. Furthermore, we investigated that the relationships between the catalytic performance and the physicochemical properties of the prepared catalysts characterized by $N_2$ adsoprtion-desorption, X-ray diffraction (XRD), $H_2$-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS).

Morphological Effect of Dispersed Phase on Gas Separation Properties through Heterophase Polymer Membrane: Theoretical and Experimental Approaches.

  • Park, Cheolmin;Jo, Won-Ho;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.55-56
    • /
    • 1996
  • Heterophase polymer system has been attractive for a potential applicability to gas separation membrane material. It has been known that there is a trade-off between gas permeability and its selectivity in common polymers. Therefore, the heterophase polymer can be an alternative for a gas separation membrane material because its transport properties can be readily controlled by blending of two different polymers. The transport properties of immiscible polymer blends strongly depend upon the intrinsic transport properties of corresponding polymers. Another important factor to determine the transport properties is their morphology: volume fraction, size and shape of dispersed phase. Although the effect of the volume fraction of the dispersed phase on the transport properties has been widely investigated, the size and shape effects have been paid attention very much. In an immiscible polymer blend of two polymers, its morphology is primarily controlled by its volume fraction of dispersed phase. Therefore, the effect of the size of the dispersed phase can be hardly seen. Therefore, a block copolymer has been commonly employed to control their morphology when each block is miscible with one or the other phase. In this work, gas transport properties will be measured by varying the morphology of the heterophase polymer membrane. The transport properties will be interpreted in terms of their morphology. The effect of the volume fraction of the PI phase and, in particular, its size effect will be investigated experimentally and theoretically.

  • PDF

Pore Size Control of Silica-Coated Alumina Membrane for $CO_2$ Separation ($CO_2$ 선택투과 분리를 위한 Silica 코팅 Alumina 막의 세공 제어)

  • 서봉국;김성수;김태옥
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.263-269
    • /
    • 1999
  • For effective $CO_2$ separation using pore size controlled membrane, silica was deposited in the mesopores of a $\gamma$-alumina film by chemical vapor deposition of tetraethoxysilane (TEOS) and phenyl-substituted ethoxysilanes at 773-873K. The membranes prepared with phenyl-substituted ethoxysilanes were calcined to remove the phenyl group and control the pore size. The gas permaselectivity of prepared membranes was evaluated by using $H_2$, $CO_2$ $N_2$, $CH_2$ and $C_3H_8$ single component and a mixture of $CO_2$ and $N_2$. The membranes produced using TEOS contained micropores having permselectivity only to hydrogen, but the phenyl-subsitituted ethoxysilane derived membranes possessed micorpores which are recognizable molecules of $CO_2$, $N_2$ and $CH_4$. In the diphenyl-diethoxysilane-derived membrane, the $CO_2$ permeance and selectivity of $CO_2$/$CH_4$ were $10^{-6} m^3(STP) \cdot m^{-2} \cdot s^{-1} \cdot kPa^{-1}$ and 11, respectively. Therefore, the use of phenyl-substituted ethoxysilane was effective in controlling micropore size for $CO_2$ separation.

  • PDF

Syntheses New Crown Ethers Containing Luminescent Coumarin Group(II) (Coumarin을 포함하는 새로운 형광 크라운 에테르의 합성(II))

  • Lee, Sang-Hwoon;Jang, Dong-Chun;Chang, Seung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.109-113
    • /
    • 2003
  • We report herein synthetic results obtained new types of crown ethers containing coumarin group. Crown ethers containing coumarin group 1~3 are hydroxymethyl-15-crown-5-ether linked with 4-hydroxy coumarin-4-acetic acid by esterification reaction. Crown ethers containing coumarin group 1~3 have different cavity in each crown ether rings. The 12-crown-4 ether with coumarin 1 has the smallest cavity size. The 15-crown-5 ether with coumarine 2 has the medium cavity size. The 18-crown-6 ether with coumarin 3 has the largest cavity size. Therefore each crown ether with coumarin group will recognize different ionic radius meta. Because of different hole size in crown ethers, these crown ethers seem to be had different selectivity in luminescent sensors. The crown ethers with coumarine 1~3 synthesized hydroxymethyl-15-crown-5-ether and 4-hydroxy coumarin-4-acetic acid same ratio at one to one. The synthesized crown ethers were characterized respectively by IR, NMR. GC-Mass.

  • PDF

Dependency of Planarization Efficiency on Crystal Characteristic of Abrasives in Nano Ceria Slurry for Shallow Trench Isolation Chemical Mechanical Polishing (STI CMP용 나노 세리아 슬러리에서 연마입자의 결정특성에 따른 평탄화 효율의 의존성)

  • Kang, Hyun-Goo;Takeo Katoh;Kim, Sung-Jun;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.65-65
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is one of the most important processes in recent ULSI (Ultra Large Scale Integrated Circuit) manufacturing technology. Recently, ceria slurries with surfactant have recently been used in STI-CMP,[1] became they have high oxide-to-nitride removal selectivity and widen the processing margin The role of the abrasives, however, on the effect of planarization on STI-CMP is not yet clear. In this study, we investigated how the crystal characteristic affects the planarization efficiency of wafer surface with controlling crystallite size and poly crystalline abrasive size independently.

  • PDF

Complex Ordering of Supramolecular Dendrimers in Confined Geometries.

  • Yoon, Dong-Ki;Choi, Myung-Chul;Kim, Yun-Ho;Kim, Mahn-Won;Jung, Hee-Tae
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.189-189
    • /
    • 2006
  • The self-assembly of supramolecular dendrimers allows the rapid construction of nanosized structures with regularly ordered features that depend on the shape of the molecules and the relative strength of the intra-and intermolecular interactions. Here we report on a dramatic improvement in the degree of control and selectivity in the orientation of fan-shaped supramolecular molecules over a large area, which has been achieved by confined geometries and applied fields. The order and orientation of supramolecular dendrimers can be controlled by surface anchoring in confined geometries. POM, SEM, TEM, AFM and XRD results show that the molecules form the complicated defect-ordering in the microchannels with different feature sizes. We show that these defect domains are strongly influenced by the boundary and feature size of the surfaces. This technique can be used to create a grain size in the plane of the film that is much larger than that which can be achieved using previously reported soft-material based pattering.

  • PDF

A Study on the Manufacturing of Porous Membrane for Separation of Gas Mixture by Al Anodizing Method (Al장극산화법에 의한 반휴분이용 다공성 격영의 제조에 관한 연구)

  • 윤은열;라경용
    • Journal of Surface Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.69-76
    • /
    • 1982
  • With a view to manufacturing membranes for separation of gas mixtures, Al foils were anodized in a 2% oxalic-acid electrolyte at 40V and 80V. When anodizing was completed and Barrier layer existed at the extreme back site of the foil, the anodized foil was made to react with only electrolyte, with switching off the electric power. When the size and density of pores were changed through voltage change, the membr-anes did not show large difference in the permeability. Reacting with electrolyte, the existing Barrier layer turns into porous layer. During this process, several small pores grow from one relatively large pore, getting to the back site. The number and size of the small pores getting to the back surface increase as time passing. This change of Barrier layer into porous layer is thought to be directly related to the permeability change of the membranes. The selectivity of an anodized Al membrane was not related to the voltage change, and was high, being similar to the theoretical selctivity of metallic membranes, according to my observation.

  • PDF