• Title/Summary/Keyword: Size resolved distribution

Search Result 33, Processing Time 0.027 seconds

Characteristics of Aerosol Size Distribution from OPC Measurement in Seoul, 2001 (OPC(광학적 입자 계수기)로 측정한 2001년 서울지역 에어로졸의 입경 분포)

  • 정창훈;전영신;최병철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.515-528
    • /
    • 2003
  • The characteristics of one year observation aerosol data in Seoul, 200 I was studied using an OPC (Optical Particle Counter). The size resolved aerosol number concentrations of 0.3 ∼ 25 11m were measured. The results were compared with PM$_{10}$ mass concentration data under various meteorological conditions including dust and precipitation events. For fine particles whose diameter is less than 2.23 ${\mu}{\textrm}{m}$, the number concentration increases in the early morning which is considered due to transportation. while the coarse mode particles increase during daytime. This increase can be explained as local sources and human activities near sampling site. Hourly averaged data show that there exists diurnal variation. Generally, PM$_{10}$ data showed a similar tendency with OPC data. The size resolved OPC data showed that the particles of 0.5 ∼ 3.67 ${\mu}{\textrm}{m}$ are positively correlated with PM$_{10}$ data. The accumulated volume fraction of size resolved aerosol concentration in 0.5 ∼ 10 ${\mu}{\textrm}{m}$ showed that 0.5 ∼ 2.23 ${\mu}{\textrm}{m}$ particles occupied 59.2% of total aerosol volume of 0.5 ∼ 10 ${\mu}{\textrm}{m}$./TEX>.

Bulk-Type Cloud Microphysics Parameterization in Atmospheric Models (대기 모형에서의 벌크형 미세구름물리 모수화 방안)

  • Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.227-239
    • /
    • 2019
  • This paper reviews various bulk-type cloud microphysics parameterizations (BCMPs). BCMP, predicting the moments of size distribution of hydrometeors, parameterizes the grid-resolved cloud and precipitation processes in atmospheric models. The generalized gamma distribution is mainly applied to represent the hydrometeors size distribution in BCMPs. BCMP can be divided in three different methods such as single-moment, double-moment, and triple-moment approaches depending on the number of prognostic variables. Single-moment approach only predicts the hydrometeors mixing ratio. Double-moment approach predicts not only the hydrometeors mixing ratio but also the hydrometeors number concentration. Triple-moment approach predicts the dispersion parameter of hydrometeors size distribution through the prognostic reflectivity, together with the number concentrations and mixing ratios of hydrometeors. Triple-moment approach is the most time expensive method because it has the most number of prognostic variables. However, this approach can allow more flexibility in representing hydrometeors size distribution relative to single-moment and double-moment approaches. At the early stage of the development of BMCPs, warm rain processes were only included. Ice-phase categories such as cloud ice, snow, graupel, and hail were included in BCMPs with prescribed properties for densities and sedimentation velocities of ice-phase hydrometeors since 1980s. Recently, to avoid fixed properties for ice-phase hydrometeors and ad-hoc category conversion, the new approach was proposed in which rimed ice and deposition ice mixing ratios are predicted with total ice number concentration and volume.

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.

Nanoparticle Synthesis by Pulsed Laser Ablation of Metal Microparticle and Consolidated Sample (금속 마이크로입자 및 압밀 시편의 펄스레이저 어블레이션에 의한 나노입자 합성)

  • Kim, Dong-Sik;Jang, Deok-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1335-1341
    • /
    • 2003
  • This paper describes the process of nanoparticle synthesis by laser ablation of microparticles and consolidated sample. We have generated nanoparticles by high-power pulsed laser ablation of AI, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355nm, FWHM 6ns, fluence $0.8{\sim}2.0J/cm^2$). Microparticles of mean diameter $18{\sim}80{\mu}m$ are ablated in the ambient air. The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence, collector position and compacting pressure on the distribution of particle size is investigated. To better understand the process of laser ablation of microparticle(LAM), we investigated the Nd: YAG laser-induced breakdown of Cu microparticle using time-resolved optical shadow images. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

Thermal Distribution of Size-resolved Carbonaceous Aerosols and Water Soluble Organic Carbon in Emissions from Biomass Burning

  • Bae, Min-Suk;Park, Seung-Shik
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • The study of carbonaceous aerosols in the atmosphere is critical to understand the role of aerosols in human health and climate. Using standardized thermal optical transmittance methods, organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) were determined using a combustion sampling system for four types of agricultural crop residues (rice straw, red pepper stems, soybean stems, and green perilla stems) and eight types of forest trees (pine stems, pine needles, ginkgo stems, ginkgo leaves, maple stems, maple leaves, cherry stems, and cherry leaves). The aerosol particles between 0.056 and $5.6{\mu}m$ in size were analyzed using a Micro-Orifice Uniform Deposit Impactor (MOUDI). In the current study, the Carbonaceous Thermal Distribution (CTD) by carbon analyzer was discussed in order to understand the carbon fractions from the twelve types of biomass burning. Also, the concentration of OC, EC, WSOC, and water insoluble organic carbon (WIOC) detected in the emissions were described.

Change of the Size-Resolved Aerosol Concentration Due to Relative Humidity (습도 변화에 따른 에어로졸의 농도 및 크기의 변화경향 파악)

  • Jung, Chang Hoon;Park, Jin Hee;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.69-78
    • /
    • 2013
  • In this study, the atmospheric aerosol concentration measured at different relative humidity levels was analyzed. Using an optical particle counter, PM10 and PM2.5 concentration as well as particle size distribution were measured and the relation between these size resolved data and relative humidity was studied. The results showed that mass concentration increases as relative humidity increases. The comparison between PM1, PM2.5 and PM10 showed that the fine particles grow more than coarse particles as relative humidity increases. The results also showed that PM10-2.5 and relative humidity do not show close correlation, which means that the mass increase of PM10 at high relative humidity is mainly due to the growth of PM2.5.

Study on Barkhausen Avalanches in Fe Thin Film (Fe 박막에서의 박하우젠 현상 연구)

  • Lee, Hun-Sung;Ryu, Kwang-Su;Shin, Sung-Chul;Kang, Im-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.176-179
    • /
    • 2009
  • We report a direct observation of Barkhausen avalanches in 50-nm Fe film, using a magneto-optical microscope magnetometer, capable of time-resolved domain observation. The time-resolved domain-evolution patterns exhibit that the occurrence of Barkhausen jump is random with respect to interval, size, and location. From the repetitive measurements more than 1000 times, we found that the probability distribution of Barkhausen jump size follows a power-law distribution and the critical exponent reveals the value of 1.14 $\pm$ 0.03.

Nanoparticle Synthesis by Pulsed Laser Ablation of Consolidated Microparticles (압밀 금속 마이크로 입자의 펄스 레이저 ABLATION에 의한 나노입자 합성)

  • 장덕석;오부국;김동식
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.31-38
    • /
    • 2002
  • This paper describes the process of nanoparticle synthesis by laser ablation of consolidated microparticles. We have generated nanoparticles by high-power pulsed laser ablation of Al, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355 nm, FWHM 5 ㎱, fluence 0.8∼2.0 J/㎠). Microparticles of mean diameter 18∼80 ㎛ are ablated in the ambient air The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence and collector position on the distribution of particle size is investigated. The dynamics of ablation plume and shock wave is analyzed by monitoring the photoacoustic probe-beam deflection signal. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

  • PDF

Formation and Hygroscopic Growth Properties of Ultrafine Particles in College Station, Texas, in 2003 (2003년 미국 텍사스 칼리지스테이션에서 관측된 초미세입자의 형성과 흡습 성장 특성)

  • Lee, Yong-Seob;Collins, Don R.
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.793-798
    • /
    • 2007
  • During May of 2003, smoke from fires in the Yucatan Peninsula was transported across the Gulf of Mexico and into Texas where it caused significant enhancement in measured aerosol concentrations and reduced visibility. During this event, the formation and growth of aerosol particles has been observed by a differential mobility analyzer (DMA) / tandem differential mobility analyzer (TDMA) system to characterize the size distribution and size-resolved hygroscopicity of the aerosol. The most number concentration is by the particles smaller than 100 nm, but the integrated number concentrations for over 100 nm increased due to the aerosol growth. Hygroscopic growth factor increase from 1.2 to 1.4 for 25, 50, and 100 nm particles during the nucleating period. This distribution and the aerosol properties derived from the TDMA data were used to calculate the growth rate. Particle growth rates were in the range 1-12 nm/hr.