• Title/Summary/Keyword: Size optimization design

Search Result 691, Processing Time 0.029 seconds

Optimization of the braced dome structures by using Jaya algorithm with frequency constraints

  • Grzywinski, Maksym;Dede, Tayfun;Ozdemir, Yaprak Itir
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • The aim of this paper is to present new and an efficient optimization algorithm called Jaya for the optimum mass of braced dome structures with natural frequency constraints. Design variables of the bar cross-section area and coordinates of the structure nodes were used for size and shape optimization, respectively. The effectiveness of Jaya algorithm is demonstrated through three benchmark braced domes (52-bar, 120-bar, and 600-bar). The algorithm applied is an effective tool for finding the optimum design of structures with frequency constraints. The Jaya algorithm has been programmed in MATLAB to optimize braced dome.

A Study on the Basic-Design of Inside-Sea Fishing Vessel by Economic Optimization Technique (경제성 최적화 기법에 의한 연근해 어선설계에 관한 연구)

  • 박제웅
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.287-295
    • /
    • 1995
  • fishing boat is a specialized vessel which is intended to perform certain well defined tasks. Its size, deck-layout, carrying capacity and equipment are all related to its function in carrying out its planned operations. Therefore the process of fishing boat design is inherently combined with optimization of the design variables called the economic optimization criteria. Optimization then is a process in which minimum value of weight or cost is established through evaluation of consecutive designs in which one or more design parameters are varied. This paper is to study the basic-design of Stow-net fishing vessel in the Mok-Po region. The main task is developed the preliminary design model of engineering economic system in order to use optimization techniques from operation research the design problem needs to be expressed in terms of objective function and numerous constrains like : speed, fish hold capacity, fishing range, displacement and weight, ratio of main dimensions, etc. The objective function represents the criterion which is NPV such as the ratio of revene/cost. When using computers of limited capacity like P/C, the developed basic-design model of the economic optimization procedure must be simplified to V, Cb, L/B, Dv, Db and less than 15 constraint equations. The main conclusions of this study have attempted to show that economic considerations are essential in Stow-net fishing vessel basic design and operations, and that techno-economic evaluation is an important tool for the design of Stow-net fishing vessel in 69ton and 79ton.

  • PDF

Improvement of Sensitivity Based Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 민감도기반 분리시스템동시최적화기법의 개선)

  • Park, Chang-Gyu;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.182-191
    • /
    • 2001
  • The paper describes the improvement on concurrent subspace optimization(CSSO) via automatic differentiation. CSSO is an efficient strategy to coupled multidisciplinary design optimization(MDO), wherein the original design problem is non-hierarchically decomposed into a set of smaller, more tractable subspaces. Key elements in CSSO are consisted of global sensitivity equation, subspace optimization, optimum sensitivity analysis, and coordination optimization problem that require frequent use of 1st order derivatives to obtain design sensitivity information. The current version of CSSO adopts automatic differentiation scheme to provide a robust sensitivity solution. Automatic differentiation has numerical effectiveness over finite difference schemes tat require the perturbed finite step size in design variable. ADIFOR(Automatic Differentiation In FORtran) is employed to evaluate sensitivities in the present work. The use of exact function derivatives facilitates to enhance the numerical accuracy during the iterative design process. The paper discusses how much the automatic differentiation based approach contributes design performance, compared with traditional all-in-one(non-decomposed) and finite difference based approaches.

Optimization of the Data Line Sharing Panel Design for the High Resolution and Large Size LCD

  • Lee, Do-Young;Ji, Ju-Hyun;Koo, Hoe-Woo;Yoo, Ki-Taek;Cho, Suk-Ho;Song, Jae-Hun;Yoo, Sung-Rok;Kim, Jae-Sang;Park, Cheol-Woo;Park, Jae-Hong;Lee, Kyung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1247-1249
    • /
    • 2009
  • We have successfully developed the 22 inch WSXGA+ DLS(Data Line Sharing) Panel driving in 75 Hz. In the large size and high resolution panels, it is very difficult to design the DLS Panels without failure because of the very short charging time and the large signal delay. So, we first investigated the charging order to find the most adequate charging type to the large size and high resolution panels. And then, we optimized the design of DLS in terms of improving the charging properties using the technologies of the Delta-doping TFTs, Cu metal electrodes and optimization of panel design value and the circuit signal timing.

  • PDF

A Study of selecting material for forming analysis in REF SILL OTR-R/L Auto-Body Panel stamping process (REF SILL OTR-R/L 차체판넬 스템핑공정에서 성형해석을 통한 재질선택에 관한 연구)

  • 황재신;정동원;안병일;문원섭;박영근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1410-1413
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

A Study of Selecting Material for Forming Analysis in Auto-Body Panel Stamping Process (차체판넬 스템핑공정에서 성형해석을 통한 재질선택에 관한 연구)

  • Hwang Jae Sin;Moon Won Sub;Lee Chan Ho;You Ho Young;Jung Dong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.484-494
    • /
    • 2005
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

A Study of tool planning for forming analysis in REE SILL OTR-R/L Auto-Body Panel stamping process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Hwang J. S.;Jung D. W.;Ahn B. I.;Mun W. S.;Park Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.138-141
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

Dynamic optimal design of an anthropomorphic robot manipulator (인체형 로봇 매니퓰레이터의 동역학적 최적설계)

  • 이상헌;이병주;광윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.82-87
    • /
    • 1994
  • In this study, dynamic optimal design far a two degree-of-freedom anthropomorphic robot module is performed. Several dynamic design indices associated with the inertia matrix and the inertia power array are introduced. Analysis for the relationship between the dynamic parameters and the design indices shows that trade-offs exist between the isotropy and the dynamic design indices related to the actuator size. A composite design index is employed to deal with multi-criteria based design with different weighting factors, in a systematic manner. We demonstrate the fact that dynamic optimization is another significant step to enhance the system performances, followed by kinematic optimization.

  • PDF

Harmony Search Algorithm-Based Approach For Discrete Size Optimization of Truss Structures

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.351-358
    • /
    • 2005
  • Many methods have been developed and are in use for structural size optimization problems, In which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary In this paper, a discrete search strategy using the HS algorithm is presented in detail and its effectiveness and robustness, as compared to current discrete optimization methods, are demonstrated through a standard truss example. The numerical results reveal that the proposed method is a powerful search and design optimization tool for structures with discrete-sized members, and may yield better solutions than those obtained using current method.

  • PDF

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.226-249
    • /
    • 2016
  • The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.