• 제목/요약/키워드: Size of Particles

검색결과 3,996건 처리시간 0.029초

대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계 (Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles)

  • 박승식;유근혜
    • 한국대기환경학회지
    • /
    • 제34권3호
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

[Retraction]Characterization of carbon black nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Lee, Seungho;Kim, Woonjung
    • 분석과학
    • /
    • 제32권3호
    • /
    • pp.77-87
    • /
    • 2019
  • High viscosity carbon black dispersions are used in various industrial fields such as color cosmetics, rubber, tire, plastic and color filter ink. However, carbon black particles are unstable to heat due to inherent characteristics, and it is very difficult to keep the quality of the product constant due to agglomeration of particles. In general, particle size analysis is performed by dynamic light scattering (DLS) during the dispersion process in order to select the optimum dispersant in the carbon black dispersion process. However, the existing low viscosity analysis provides reproducible particle distribution analysis results, but it is difficult to select the optimum dispersant because it is difficult to analyze the reproducible particle distribution at high viscosity. In this study, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) analysis methods were compared for reproducible particle size analysis of high viscosity carbon black. First, the stability of carbon black dispersion was investigated by particle size analysis by DLS and AsFlFFF according to milling time, and the validity of analytical method for the selection of the optimum dispersant useful for carbon black dispersion was confirmed. The correlation between color and particle size of particles in high viscosity carbon black dispersion was investigated by using colorimeter. The particle size distribution from AsFlFFF was consistent with the colorimetric results. As a result, the correlation between AsFlFFF and colorimetric results confirmed the possibility of a strong analytical method for determining the appropriate dispersant and milling time in high viscosity carbon black dispersions. In addition, for nanoparticles with relatively broad particle size distributions such as carbon black, AsFlFFF has been found to provide a more accurate particle size distribution than DLS. This is because AsFlFFF, unlike DLS, can analyze each fraction by separating particles by size.

Chemically Aged Asian Dust Particles Proven by Traditional Spot Test and the Most Advanced micro-PIXE

  • Ma, Chang-Jin;Tohno, Susumu;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권2호
    • /
    • pp.114-123
    • /
    • 2016
  • A change in chemical compositions of Asian dust (AD) particles can dramatically alter their optical properties, cloud-forming properties, and health effects. The present study was undertaken to evaluate this aging of AD particles by means of two complementary methods (i.e., the traditional spot test and the most advanced micro-PIXE analytical technique) for single particle analysis. Size-classified particles were sampled at the rural peninsula of Korea (Byunsan, 35.37N; 126.27E) during AD event and non-AD period in 2004. Sulfate was principally enriched on the particles in the size range of $7.65-10.85{\mu}m$ collected during AD event. The average number fraction of coarse particles ($>2.05{\mu}m$) containing chloride was 16.2% during AD event. Relatively low particles containing nitrate compared to those containing sulfate and chloride were found in AD event. Micro-PIXE elemental maps indicated that a large number of AD particles were internally mixed with man-made zinc. The highest peaks of EC and OC concentrations were appeared at $0.01-0.43{\mu}m$ particle aerodynamic diameter. High EC concentration in $PM_1$ was might be caused by the Saemangeum Seawall Project that was being conducted during our field measurement.

Synthesis of Monodisperse Spherical SiO2 and Self-Assembly for Photonic Crystals

  • Lee, Byung-Kee;Jung, Young-Hwa;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.472-477
    • /
    • 2009
  • Monodisperse spherical $SiO_2$ particles of various sizes ($\sim$350 nm and $\sim$800 nm) and size distributions were synthesized from TEOS and MTMS. The particle size and size distribution were controlled by changing the volume ratio of water to ethanol and the reaction temperature. Narrow-sized $SiO_2$ particles with $\sim$3% size distribution were obtained. Self-assembly of the $SiO_2$ particles for photonic crystals were performed by the solvent evaporation method. The number of ordered $SiO_2$ layers can be controlled by changing the amount of the dispersed $SiO_2$ volume fraction in the solvent.

슬러리 가압함침에 의한 3D Mullite 섬유 Preform의 알루미나 입자 충전 (Packing of Alumina Particles in 3D Preform of Mullite Fiber by Slurry Pressure-Infiltration)

  • 심수만
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.528-532
    • /
    • 2013
  • Well-dispersed slurries of submicron-sized alumina powders were pressure-infiltrated in 3D preforms of mullite fibers and the effects of the particle size and infiltration pressure on the particle packing characteristics were investigated. Infiltration without pressure showed that the packing density increased as the particle size decreased due to the reduction of the friction between the particles and the fibers. The infiltrated preforms contained large pores in the large voids between the fiber tows and small pores in the narrow voids between the individual fibers. Pressure infiltration resulted in a packing density of 77% regardless of the particle size or the infiltration pressure(210 ~ 620 kPa). Pressure infiltration shortened the infiltration time and eliminated the large pores in preforms infiltrated with the slurries of smaller particles. The slurry pressure-infiltration process is thus an efficient method for the packing of matrix materials in various preforms.

서스펜션 중에서 입자의 형태와 크기가 침강특성에 미치는 영향 (The Effect of Particle Shape and Size on the Settling Characteristics in Suspension)

  • 이기종
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.927-933
    • /
    • 1994
  • 비구형 입자들의 크기와 형태에 따른 침강 특성의 영향을 검토하였다. 비구형입자를 포함하는 서스펜션의 침강에서 $log \mu_{c}$$log \varepsilon$로부터 얻은 기울기 지표n값은 형태와 크기가 다른 입자는 같은 부피 농도에서 흡착되는유체량이 달라져 입자크기가 감소하거나 불균일한 경우 증가하는 경향을 나타내었다. 실험결고 비구형입자를 포함하는 서스펜션의 침강에서 기울기 지표 $n_{i}$값에 대하여 $n_{i}=n(a+b/d_{v})$와 같은 식을 얻었으며 이때 a, b는 입자형태에 따른 상수이다.

  • PDF

모멘트법을 이용한 AC 전기장 내의 단극성 입자의 전기응집 해석 (Analysis of Electrical Coagulation of Unipolar Charged Particles in an Alternating Electric Using Moment Method)

  • 지준호;황정호
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.9-17
    • /
    • 2001
  • A numerical study has been carried out on the evolution of the particle size distribution for unipolar charged particles that experience coagulation in an alternating electric field. The collision frequency function of charged particles was analytically derived. The log-normal size distribution function is utilized for representing a poly-disperse size distribution and the moments of the particle size distribution are used to solve the general dynamic equation considering only AC electric force effect. The results are compared with the effects of brownian coagulation.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

의료용 흡입기 및 분무기의 성능 평가 연구 (Efficiency test Evaluation Method for Nebulizer & Medicinal Nonventilatory Nebulizer)

  • 김성민;정재훈;이주환;노승규
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권5호
    • /
    • pp.438-443
    • /
    • 2009
  • Nebulizer is designed to atomize medicinal fluid for patient with small particles(0.5-$5{\mu}m$) and also able to deliver particles from devices to the lungs when patient inhales air. Several particle size measurements are currently used to size aerosol particles. The most commonly used test is the cascade impactor method in as a standard. But, other methods for comparative particle size distribution data such as the particle size range and reproducibility are acceptable. Therefore, in this study a new test methode is suggested for nonventilatory nebulizer evaluation equipment.

양이온 OTAC와 음이온ADS 혼합 수용액에서 형성된 층막구형체에 의한 $CaSO_4$ 나노입자의 제조 (Preparation of $CaSO_4$ Nanoparticles by Catanionic Vesicles Formed in Cationic OTAC and Anionic ADS Mixed Aqueous Solution)

  • 김홍운;임경희
    • 한국응용과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.380-387
    • /
    • 2004
  • The preparation of $CaSO_4$ nanoparticle by vesicles formed spontaneously in cationic OTAC and anionic ADS mixed surfactant solution whose ratio is 0.3/0.7 is investigated. Added electrolytes for preparing nanoparticles reduce vesicle size about 200-300 nm comparing with that of pure vesicle whose size is 700-800 nm by DLS. The core of vesicles has 200 nm size and acts as nanoreactors which same size of monodisperse $CaSO_4$ nanopaticles are formed. Although $CaSO_4$ particles are formed at the outer of vesicles, they are very large and amorphous. The formed particles are identified with XRD analysis after separation due to coinciding with $CaSO_4$ particles.