• Title/Summary/Keyword: Size of Boring

Search Result 43, Processing Time 0.023 seconds

Laboratory considerations about frictional force on pipe surface when slurry machine is used

  • Khazaei Saeid;Shimada Hideki;Kawai Takashi;Yotsumoto Jyunichi;Sato Iwao;Matsui Kikuo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.214-220
    • /
    • 2003
  • Pipe jacking is a name for a method to excavate a tunnel by pushing pipe into the ground from an especial pit. Size of tunnels in this method is different from under 900mm (microtunneling) to more than 3,000mm. Method of excavation is also different from hand digging to use of any kind of tunnel boring machines such as slurry and earth pressure balance (EPB) machines. Slurry pipe jacking was firmly established as a special method for the nondisruptive construction of the underground tunnels in urban area. During the pipe jacking and microtunneling process, the jacking load is an important parameter, controlling the pipe wall thickness, need to and location of intermediate jacking station, selection of jacking frame and lubrication requirements. The main component of the jacking load is due to frictional resistance. In this paper the skin friction between pipe surface and surrounding condition also lubricant quality based on a few fundamental tests, were considered. During this study unconfined compressive strength test, dynamic friction measurement test and direct shear box test were raised for one of the largest diameter slurry pipe jacking project in Fujisawa city in Japan. It could be concluded that in slurry pipe jacking, prediction of frictional forces are mainly dependent on successful lubrication, its quality and lubricant strength parameters. Conclusions from this study can be used for the same experiences.

  • PDF

Study on the Geophysical Research Applications Using Radioactive Isotopes (I) Study on the Structures in Strata by Using γ-γ Logging Apparatus (방사성동위원소의 지구물리학적 응용에 관한 연구 γ-γ 검층법에 의한 지층구조에 관한연구)

  • Lee, Hyun Duk;Rho, Seung Gy
    • Economic and Environmental Geology
    • /
    • v.9 no.3
    • /
    • pp.135-141
    • /
    • 1976
  • The gamma-gamma logging method appplying in geophysical research are presented in this paper_ The logging probe assembly was designed which permits changing the source-to-detector spacing while conditions of proceeding ${\gamma}-{\gamma}$ logging, which a collimated gamma ray source ($^{60}Co$, 0.5mCi and/or 2 mCi) is separated from the scintillation detector as shown in Fig. 2 and 3, size is 6.0 cm in diameter and 120.0 cm in long and the exposed parts are made of stainless steel pipe. The results is confirmed by the experiment performed mainly in granite rock where a slightly constant shape was obtained but sometimes was shown sharpness shape for the measured scattered gamma-ray intensity. Consequently, the experimental results are obtained an adequate intensity of scattered gamma-rays and favourable response to density change, and also very closely correspond to between core samples of the test boring and to used this method of ${\gamma}-{\gamma}$ logging in the test bore-hole of the strata.

  • PDF

A Case Study on Construction of Tunnel at Limestone Cavity Site (석회암공동 분포지역에서의 터널 시공사례)

  • Kim, Si-Kyeok;Kang, In-Seop;Kim, Yong-Ha;Yoon, Il-Byung;Moon, Hoon-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.66-75
    • /
    • 2006
  • As construction for road tunnel is increasing, various geotechnical conditions can be faced during the construction stage. Especially, if the tunnel is located in limestone area, many kinds of site investigations such as in-situ boring, electrical resistance survey, TSP(Tunnel Seismic Prediction) and etc., are conducted before and during the construction. By conducting these preliminary tests, location, size, and filling materials in limestone cavities can be approximately estimated. Once some cavities which can be harmful for tunnel safety are predicted, methods for ground reinforcement and tunnel excavation, corresponding those ground conditions, have to be established and verified by measurement data and numerical analysis. If necessary, invert lining should be also considered. In this paper, by studying some cases of tunnels constructed in limestone area, predicted problems during construction and rational countermeasures for those are presented.

  • PDF

A study on key factors of ground surface settlement due to shield TBM excavation using 3-dimension numerical analysis (3차원 수치해석을 이용한 Shield TBM 굴진시 지표침하 주요 영향요소 분석)

  • Jun, Gy-Chan;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.305-317
    • /
    • 2015
  • This paper is to perform 3-dimensional numerical analysis considering face pressure, backfill pressure, excavation length, soil model and element size for selecting key factors of ground surface settlement due to shield TBM advancement. According to the numerical analysis results, backfill pressure and soil model are governing factors inducing ground surface settlement. To complement this study, the ground conditions and characteristics of the boring machine will be considered using numerical analysis.

Analysis of Paleo Sedimentary Environment of Gochang Coast Using Grain Size Distribution Characteristics (입도분포 특성을 기반으로 한 고창 연안의 과거 퇴적환경 분석)

  • Han, Min;Yang, Dong-Yoon;Park, Chanhyeok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.43-55
    • /
    • 2018
  • This study aimed to identify different sedimentary environments of Gochang coast according to geomorphic conditions of each bore hole. To achieve the aim, this study utilized the classification of sedimentary environmental conditions of surface sediment, which was based on grain size distribution characteristics.In other words, three sedimentary environmental conditions ofsandy flat + sand beach, coastal sand dune and weathered bedrock soil, which were distinguished based on grain size distribution characteristics of mean-sorting for surface sediments, were applied to the sediments of bore holes. Four sedimentary environments could be identified in Gochang coast. First, the lake sedimentary environment originated from terrestrial sediments seems to have been dominated by weathered bedrock soil that the surface flow has deposited in a coastal wetland or a boundary, which is affected by the sea. Second, the lake sedimentary environment that is little affected by coastal sand dunes is located at the center of a valley, which is connected to the land, and the dune slack of Saban-ri. The surface flow of weather bedrock soil is the main source of deposits. However, there seems to have been a temporary influence of the sea. Third, the lake sedimentary environment that is strongly affected by coastal sand dunes is located at the dune slack of Yeongjeong-ri. This environment shows traces of a change from a coastal sand dune into the dune slack. Finally, the coastalsand dune sedimentary environment, which wasinvestigated by boring the current coastal sand dune, shows a temporary influence of the land but seems to have maintained the overall stability. Consequently, this study demonstrated that the grain size distribution characteristics of the present surface sediments could be effectively applied to identify the sedimentary environments of the paleo bore hole sediments. In addition, the paleo change of sedimentary environment could also be identified in many places of Gochang coast. If the results of this study are combined with the age dating and geochemical analysis in future works, the paleo environmental change in Gochang coast will be restored more precisely.

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

A study on the physical properties of fine aggregates of Bonghwang-cheon in the Geum River Basin, Korea (금강유역의 봉황천에 부존하는 잔골재 물성연구)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Lee, Jin-Young;Hong, Sei-Sun;Kim, Jeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • In this study we experiment on sand deposits (tine aggregates) taken from the old river-bed of the Bonghwang-cheon of Geum River Basin, and evaluate physical properties of fine aggregates in comparison to the KS quality regulation. As a result of experimentation, particle size of fine aggregates is generally smaller in the downstream area than in the upstream area. In addition, physical properties of the fine aggregates tend to depend on the bedrock type. Physical properties of fine aggregates show a strong positive correlation with particle size of old river-bed sediments. Finally, the general physical properties of fine aggregates are conformable to the KS quality regulation, except density and proportion of materials finer than $75{\mu}m$.

  • PDF

Molluscan Death Assemblages and Their Ecological Implications on a Tidal Flat, Inchon, Korea (인천연안 간석지산 연체동물 유해집단(遺骸集團)의 구조와 생태학적 의미)

  • Hong, Jae-Sang;Park, Heung-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.94-102
    • /
    • 1998
  • Temporal changes, density, calcimass, mode of occurrence, size-frequency histogram and survivorship curves were studied for the molluscan death assemblages on a macrotidal flat, Inchon, Korea. The living and death assemblages were compared on the basis of the taxonomic compositions and their numerical abundances. A total of 28 species (16 taxa in gastropods and 12 in bivalves) were identified. Most of the dead shells were the species inhabiting that intertidal mud flat. Species diversity was higher in gastropods than in bivalves. Seasonal variation of the calcimass was influenced by the mactrid bivalve, Mactra veneriformis. Shell-boring naticid gastropods preferred selecting the umbo areas of various valves. Size-frequency distribution and size-specific survivorship curves were analyzed for the dominant species. Survivorship curve of the tellinid bivalve, Morella rutila was convex-up in shape, which is congruent with the expected equilibrium condition but indicates higher mortality in winter. Whereas the survivorship curves of Mactra veneriformis and Reticunassa festiva were semi convex-up with dual modes, suggesting a disequilibrium due to the changes in recruitment and seasonal mortality. This study suggests that the dead shell assemblages may be useful in getting population information like live molluscan assemblages, if solved for several problems related to taphonomic processes.

  • PDF

A Study on the Community of Xylophagous Beetles in Korean White Pine, Pinus koraiensis, Forests (잣나무림에서 천공성 딱정벌레 군집에 관한 연구)

  • Choi, Won IL;Kim, Kyung-Min;Koh, Sang-Hyun;Nam, Youngwoo
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.41-49
    • /
    • 2017
  • The community of xylophagous beetles belonging to Cerambycidae, Curculionidae and Scolytinae in Korean white pine, Pinus koraiensis Siebold & Zuccarini, forests was surveyed using Malaise traps in 2007. A total of 1,615 xylophagous beetles were collected, including 184 cerambycids from 15 species, 185 curculionids from 17 species, and 1,246 scolytid beetles from 6 species, of which the dominant species was the ambrosia beetle Xyleborus mutilatus Blandford. Ranked by order of population size, the wood-boring and bark beetle community in Korean white pine showed high dominance by one species of Scolytinae, suggesting the community had low biological diversity. Thinning in Korean white pine forests influenced on the abundance of bark and ambrosia beetles, whose populations in particular stands increased 1 year after thinning, and then decreased the following year.

Determination of Deformation Modulus of Rock Mass with Measured Tunnel Displacement (측정된 터널변위에 의한 암반 변형계수의 결정)

  • Park, Jae-Woo;Park, Eun-Gyu;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.655-664
    • /
    • 2007
  • The major geotechnical parameters employed in tunnel design are deformation modulus, Poisson's ratio, friction angle, cohesion, etc. Among these parameters, the deformation modulus is the most significant parameter in tunnel deformation. However, determination of the modulus for rock mass by means of tests is very difficult due to factors affecting including discontinuities and sample size, etc. Thus input values used in the numerical analysis are generally determined by empirical method. A numerical analysis on tunnel was conducted with geotechnical parameters determined through the geological field mapping, laboratory tests, and evaluation of boring data, and some discrepancy between the computed result and tunnel displacements measured was found. Thus, further analyses by changing the deformation modulus of rock mass were performed to determine a relationship between the modulus and computed displacement. Data from two tunnel sites were used to verify the applicability of the proposed method and a correlative equation between deformation modulus and tunnel displacement is proposed. The deformation modulus of rock mass was around 30-40% of young's modulus of intact rock in these cases.