• Title/Summary/Keyword: Size combination

Search Result 1,167, Processing Time 0.028 seconds

A Study on Spatial Aggregation Method for Path Travel Time Estimation using Hi-Pass DSRC System (하이패스 DSRC 기반의 경로통행시간 산정을 위한 공간적 집계방안 산정에 관한 연구)

  • Lee, Hwanpil;Shim, Sangwoo;Choi, Yuntaek;Kim, Dongin
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.119-129
    • /
    • 2014
  • PURPOSES : This investigational survey is to observe a proper spatial aggregation method for path travel time estimation using the hi-pass DSRC system. METHODS : The links which connect the nodes of section detectors location are used for path travel time estimation traditionally. It makes some problem such as increasing accumulation errors and processing times. In this background, the new links composition methods for spatial aggregation are considered by using some types of nodes as IC, JC, RSE combination. Path travel times estimated by new aggregation methods are compared with PBM travel times by MAE, MAPE and statistical hypothesis tests. RESULTS : The results of minimum sample size and missing rate for 5 minutes aggregation interval are satisfied except for JC link path travel time in Seoul TG~Kuemho JC. Thus, it was additionally observed for minimum sample size satisfaction. In 15, 30 minutes and 1 hour aggregation intervals, all conditions are satisfied by the minimum sample size criteria. For accuracy test and statistical hypothesis test, it has been proved that RSE, Conzone, IC, JC links have equivalent errors and statistical characteristics. CONCLUSIONS : There are some errors between the PBM and the LBM methods that come from dropping vehicles by rest areas. Consequently, this survey result means each of links compositions are available for the estimation of path travel time when PBM vehicles are missed.

A Case Report of Nail Bed Reconstruction with Digital Artery Perforator (DAP) Flap and Buccal Mucosal Graft (수지동맥천공지피판술과 볼점막 이식을 통한 조갑상 손상 치험 1례)

  • Lee, Yong-Woo;Kim, Youn-Hwan;Kim, Jeong-Tae
    • Archives of Plastic Surgery
    • /
    • v.38 no.1
    • /
    • pp.113-116
    • /
    • 2011
  • Purpose: Many fingertip injuries are associated with nail injury and it is hard to repair to original shape due to its unique characteristic. Mucosal graft is used for a defect of the nail bed injury. Hereby, we introduce a DAP flap and buccal mucosal graft, with which we could reduce the defect size of the injured fingertip and donor site morbidity at the same time, without any need for harvesting additional skin from other part of hand. Also, mucosal graft makes good cosmetic and functional outcome of nail. Methods: This method was performed in a 56-year-old man with fingertip injury on dorsal side of left thumb due to electrical saw. First, DAP flap was performed on the injured finger to reduce the size of the defect of fingertip and cover the bone exposure. Second, nail bed part of the DAP flap was de-epithelized and buccal mucosal graft was done from left side of intraoral cavity wall. Results: Flap and graft survived without any necrosis but some nail bed could not be covered with flap due to insufficient flap size. All wounds healed well and did not present any severe adversary symptoms. Conclusion: DAP flap with mucosal graft is an effective method that we can easily apply in reconstruction of fingertip injury. We suggest that the combination of the two procedures makes good functional and cosmetic outcome compared to the usual manner, especially in cases of nail bed injury without distal phalanx bone defect.

Effect of Sowing Time on Germination and Early Seedling Growth of Quercus floribunda Lindl.

  • Karki, Himani;Bargali, Kiran;Bargali, SS
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.199-208
    • /
    • 2018
  • Quercus floribunda (Tilonj oak) is among the five species of Quercus and an evergreen tree found in Kumaun Himalayan region. Timing of germination is a crucial event determining the success of seedling establishment and survival. The aims of the study were to investigate the effect of sowing date on the germination and morphological responses of Tilonj oak (Quercus floribunda), cultivated during the month of August-September, with supplementary irrigation. The experiment was conducted by sowing seeds at two dates with one month interval in glass house conditions at DSB Campus, Nainital, Uttarakhand, India. Present study revealed that higher germination percentage (46.67 %) was recorded at sowing time $S_2$ as compared to the sowing time $S_1$ (32.86 %). Germination percentage as well as seedling growth were affected by sowing date though the differences were insignificant. At both the sowing dates, highest germination percentage was recorded for large seeds (32.86-46.67 %) followed by medium (31.43-33.33 %) and lowest germination (6.67-7.14 %) was recorded for small size seeds. In all parameters assessed, sowing time $S_2$ had the best performance in combination with large seed size. Thus, September is suitable month for best germination, growth and seedling vigour and large seed size is recommended to silviculturists and tree planters. The information on seed germination and seedling growth is vital both for conservation and rehabilitation of degraded lands.

Sediment Erosion and Transport Experiments in Laboratory using Artificial Rainfall Simulator

  • Regmi, Ram Krishna;Jung, Kwansue;Nakagawa, Hajime;Kang, Jaewon;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.13-27
    • /
    • 2014
  • Catchments soil erosion, one of the most serious problems in the mountainous environment of the world, consists of a complex phenomenon involving the detachment of individual soil particles from the soil mass and their transport, storage and overland flow of rainfall, and infiltration. Sediment size distribution during erosion processes appear to depend on many factors such as rainfall characteristics, vegetation cover, hydraulic flow, soil properties and slope. This study involved laboratory flume experiments carried out under simulated rainfall in a 3.0 m long ${\times}$ 0.8 m wide ${\times}$ 0.7 m deep flume, set at $17^{\circ}$ slope. Five experimental cases, consisting of twelve experiments using three different sediments with two different rainfall conditions, are reported. The experiments consisted of detailed observations of particle size distribution of the out-flow sediment. Sediment water mixture out-flow hydrograph and sediment mass out-flow rate over time, moisture profiles at different points within the soil domain, and seepage outflow were also reported. Moisture profiles, seepage outflow, and movement of overland flow were clearly found to be controlled by water retention function and hydraulic function of the soil. The difference of grain size distribution of original soil bed and the out-flow sediment was found to be insignificant in the cases of uniform sediment used experiments. However, in the cases of non-uniform sediment used experiments the outflow sediment was found to be coarser than the original soil domain. The results indicated that the sediment transport mechanism is the combination of particle segregation, suspension/saltation and rolling along the travel distance.

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

Application Behavior-oriented Adaptive Remote Access Cache in Ring based NUMA System (링 구조 NUMA 시스템에서 적응형 다중 그레인 원격 캐쉬 설계)

  • 곽종욱;장성태;전주식
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.9
    • /
    • pp.461-476
    • /
    • 2003
  • Due to the implementation ease and alleviation of memory bottleneck effect, NUMA architecture has dominated in the multiprocessor systems for the past several years. However, because the NUMA system distributes memory in each node, frequent remote memory access is a key factor of performance degradation. Therefore, efficient design of RAC(Remote Access Cache) in NUMA system is critical for performance improvement. In this paper, we suggest Multi-Grain RAC which can adaptively control the RAC line size, with respect to each application behavior Then we simulate NUMA system with multi-grain RAC using MINT, event-driven memory hierarchy simulator. and analyze the performance results. At first, with profile-based determination method, we verify the optimal RAC line size for each application and, then, we compare and analyze the performance differences among NUMA systems with normal RAC, with optimal line size RAC, and with multi-grain RAC. The simulation shows that the worst case can be always avoided and results are very close to optimal case with any combination of application and RAC format.

Effect of Solid Content and Particle Size on the Flow Properties of Molten Chocolate (고형성분의 농도와 입도가 액상 초코렛의 유동특성에 미치는 영향)

  • Kim, Do-Un;Yoo, Myung-Shik;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.75-79
    • /
    • 1989
  • The rheological properties of sugar and cocoa particle suspensions in cocoa butter under molten condition were analyzed with Haake rotationary viscometer. Both suspensions had yield value and showed rheopexy at low shear rate and thixotropy at high shear rate. Flow behaviors of the suspensions were analyzed with modified Casson model. Casson viscosity and yield value increased with increasing the concentration of sugar and cocoa particles. There was an obvious dependence of the Casson viscosity and yield value on the particle size distributions that was represented by the Sauter mean diameter of the particles. Casson viscosity and yield value of cocoa butter-sugar suspension increased with increasing the fineness of sugar particle crystal. With increasing the fineness of cocoa particle a decreasing Casson viscosity of cocoa butter-cocoa particle suspension was achieved, but the yield value did not change significantly with cocoa particle size. Therefore, it was predicted that the best rheological properties of chocolate could be obtained with the combination of coarse ground sugar $(d=36.30{\mu}m)$ and fine ground cocoa particle $(d=14.81{\mu}m)$ within the studied range.

  • PDF

Growth of RIG Single Crystals by Flux Technique (융제법에 의한 RIG 단결정 육성)

  • 김성현;이석희;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.459-470
    • /
    • 1989
  • Single crystals of rare-earth iron garnets were grown from solutions of molten lead oxide, lead fluoride, baric oxide, iron oxide, and the oxides of yttrium, samarium orgadolinium. The crystals were grown by slow cooling technique. A convenient composition was 41.8mol% PbO, 20.59mol% PbF2, 8.23mol% B2O3, 20.00mol% Fe2O3 and 10.00mol% R2O3 where R is Y, Sm or Gd. For this experiment, platinum crucibles of size 20, 30cc and a vertical siliconit tube furnace were used. The precipitation temperature of YIG was observed in the range of 115$0^{\circ}C$-112$0^{\circ}C$ and the optimum growth conditions in this experiment were determined. The nucleation rate was controlled by the holding time after the fast colling, the growth rate by the slow cooling conditiions. The form of the grown YIG crystals showed a combination of {110} and {211}, and the size of the crystals grown in this experiment was up to about 9mm under the conditions of holding time 16hour, cooling rate 2$^{\circ}C$/hr. and temperature range 115$0^{\circ}C$-90$0^{\circ}C$. The precipitatin temperature of SmIG was observed in the range of 105$0^{\circ}C$-98$0^{\circ}C$ and the size of the crystals grown in this experiment was up to about 5mm under the conditiions of holding time 16hours, cooling rate 2$^{\circ}C$/hr. and temperature range 100$0^{\circ}C$-80$0^{\circ}C$.

  • PDF

Diopside Crystal Glaze Using Seed (Seed를 사용한 Diopside 결정유약)

  • Byeon, Soo Min;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.407-412
    • /
    • 2014
  • Currently, diopside ($MgCaSi_2O_6$) crystal glaze is used frequently for pottery works or in earthen wares, though the process is not straightforward. However, to create and control the positions and sizes of the crystals in desired amounts when making pottery is difficult. To solve this problem, a diopside crystal seed was created at a temperature of $1450^{\circ}C$. After planting this seed in the glaze, a glaze combination and firing process which allows a user to create crystals with the desired position and at the desired size were established. In addition, in order to investigate the creation process of the crystals, the growth patterns of the crystals were observed and examined using Raman spectrography and XRD and SEM analyses. As a result, the optimum synthesis condition of the diopside seed was created by mixing 1 mole of $CaCo_3$, 0.2 mole of $(MgCo_3)_4(MgCoH)_2{\cdot}5H_2O$ and 2 moles of $SiO_2$ and then applying a firing process to the mixture at $1,450^{\circ}C$ for 30 minutes. The optimum glaze content of the seed was 70 % feldspar, 20 % limestone and 10 % $MgCo_3$. For the firing process, it was confirmed that the size of crystal is larger with a longer firing time at $1100^{\circ}C$ by completing a two-hour process at $1280^{\circ}C$. In addition, the diopside crystal has columnar structure and is less than $1{\mu}m$ in size.

Microstructure and Mechanical Properties of Hardmaterials

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.6-6
    • /
    • 1994
  • Har dmaterials such as cemented carbides with or without coated layer, cermets, ceramics and diamond or c-BN high pressure sintered compact are used for cutting tools, wear -resistant parts, rock drilling bits and/or high pressure vessels. These hardmaterials contain not only hard phase, but also second consituent as the element for forming ductile phase and/or sintering aid, and the mechanical properties of each material depend on (1) the amount of the second constituent as well as (2) the grain size of the hard phase. The hardness of each material mainly depends on these two factors. The fracture strength, however, largely depends on other microstructur a1 factors as well as the above two factors. For all hardmaterials, the fracture strength is consider ably affected by (3) the size of microstructur a1 defect which acts as the fracture source. In cemented carbides, the following factors which are generated mainly due to the addition of the second constituent are also important; (4) the variation of the carbon content in the normal phase region free from V-phase and graphite phase, (5) the precipitation of $Co_3$ during heating at about $800^{\circ}C$,(6) the domain size of binder phase, and (7) the formation of ${\beta}$-free layer or Co-rich layer near the surface of sintered compacts. For cemented carbides coated with thin hard substance, the important factors are as follows; (8) the kind of coated substance, (9) the formation of ${\eta}$-phase layer at the interface between coated layer and substrate, (10) the type of residual stress (tension or compression) in the coated layer which depends on the kind of coating method (CVD or PVD), and (11) the properties of the substrate, and (12) the combination, coherency and periodicity of multi-layers. In the lecture, the details of these factors and their effect on the strength will be explained.

  • PDF