• Title/Summary/Keyword: Size Prediction

Search Result 1,430, Processing Time 0.025 seconds

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Shear Performance of Full-Scale Recycled Fine Aggregate Concrete Beams without Shear Reinforcement (전단 보강되지 않은 실규모 순환 잔골재 콘크리트 보의 전단성능)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • This paper presents the test results on the shear performance of large-size reinforced concrete beams using recycled fine aggregate to evaluate its applicability to structural concrete. The performance of these beams is compared to that of similar beams casted with natural coarse and fine aggregates. All of the beam specimens without shear reinforcement had $400mm{\times}600mm$ rectangular cross section and a shear span ratio (a/d) of 5.0. Five concrete mixtures with different replacement levels of recycled fine aggregates (0, 30, 60, 70 and 100%) were used to obtain a nominal concrete compressive strength of 28MPa. The test results of load-deflection curve, shear deformation, diagonal cracking load, crack pattern, ultimate shear strength, and failure mode are examined and compared. In addition, code and empirical equations from KCI, JSCE, CSA, Zsutty, and MCFT were considered to evaluate the applicability of these equations for predicting shear strength of reinforced concrete beam with recycled fine aggregate. The results showed that the overall shear behavior of reinforced concrete beams incorporating less than 60% recycled fine aggregate was comparable with that of conventional concrete beam. The MCFT gave good prediction and other code equations were conservative in predicting the shear strength of the tested beams. The beam specimens with replacement of 70 and 100% of natural fine aggregates by recycled fine aggregates showed different failure mode than other tested beams.

Alternative Transform Based on the Correlation of the Residual Signal (잔여 신호의 상관성에 기반한 선택 변환)

  • Lim, Sung-Chang;Kim, Dae-Yeon;Lee, Yung-Lyul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.80-92
    • /
    • 2008
  • Many predominant video coding tools in terms of coding efficiency were adopted in the latest video coding standard, H.264/AVC. Regardless of development of these predominant video coding tools such as the variable block-size motion estimation/compensation, intra prediction based on various directions, and so on, the discrete cosine transform has been continuously used starting from the early video coding standards. Generally, the correlation coefficient of the residual signal is usually less than 0.5 when this residual signal is actually encoded. In this interval of correlation coefficient, the discrete cosine transform does not show the optimal coding gain, and the discrete sine transform which is a sub-optimal transform when the correlation coefficient is in the interval from -0.5 to 0.5 can be used in conjunction with the discrete cosine transform in the video coding. In this paper, an alternative transform that alternatively uses the discrete sine transform and integer cosine transform in H.264/AVC by using rate-distortion optimization is proposed. The proposed method achieves a BD-PSNR gain of up to 0.71 dB compared to H.264/AVC JM 10.2 at relatively high bitrates.

Discharge Rate Prediction of a new Sandbypassing System in a Field (새로운 샌드바이패싱 시스템의 토출율 예측을 위한 현장실험 연구)

  • Kweon, Hyuck-Min;Park, Sang-Shin;Kwon, Oh-Kyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.292-303
    • /
    • 2011
  • A new type of sand bypassing system is proposed for recovering the eroded beach in this study. This system provides an added methodology to the soft defence which is main recovery method for the coastal shore protection in the world. The study proposes a conceptional design and manufacturing procedure for the relatively small size machine of sand bypassing. In order to get the discharging volume information, the power capacity of the system is tested in the field. The discharge rate of the new system shows up to the expected maximum of 618 ton/hr which is 9.6% lower than that by theoretical calculation. It gives a resonable agreement in this system when the flow is assumed to be of the high density. In this study, the delivering volume of sand is estimated according to the discharge rate. The combination of 300 mm(12 inch) intake and 250 mm(10 inch) discharge pipe line has the pumping capacity of $103\;m^3/hr$ which is nearly the same as that of South Lake Worth Inlet sand bypassing system, Florida, U.S.A.. The proposed system added the mobility to its merit. The unit price of Florida's sand bypassing is $$8~9/m^3$ (US). The system would be economically suitable for small volume of sand because no additional equipment is necessary for the intake. The diesel fuel of 25~30 l/hr was consumed during the system operation. The multiple working system would be the next investigation target for large volume of sand.

Impact Resistance of Steel Fiber-Reinforced Concrete Panels Under High Velocity Impact-Load (고속충격하중을 받는 강섬유보강콘크리트 패널의 내충격성능)

  • Kim, Sang-Hee;Kang, Thomas H.K.;Hong, Sung-Gul;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.731-739
    • /
    • 2014
  • This paper describes the evaluation of the impact performance of steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens with panel thickness to ball diameter (h/d) ratios of 3.5 or less were tested with variables of steel fiber volume fraction, panel thickness, impact velocity, and aggregate size. Test results were compared with each other to evaluate the impact resistance. The results showed that the percentage of weight and surface loss decreased as the steel volume fraction increased. However, the penetration depth increased with up to steel fiber volume fraction of 1.5%. Particularly the results of specimens with 20 mm aggregates showed poorer performance than those with 8 mm aggregates. The results also confirmed that the impact performance prediction formulas are conservative with (h/d) ratios of 3.5 or less. Despite the conservative predictions, the modified NDRC formula and ACE formula predict the impact performance more consistently than the Hughes formula.

Characteristics of Shear Strength and Consolidation Behavior of Soft Ground according to Stage Fill (단계성토에 따른 연약지반의 전단강도 및 압밀거동 특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.17-26
    • /
    • 2020
  • The soft ground in the southwest coastal area composed of marine clay is greatly influenced by sediment composition, particle size distribution, particle shape, adsorption ions and pore water characteristics, tide and temperature. In addition, the geotechnical properties are very complex due to stress history, change in pore water, dissolution process and gas formation. In this study, the physical and mechanical properties of the soft ground were evaluated through field tests and laboratory tests to investigate the strength increase characteristics according to consolidation on the soft ground in the southwest coast. In addition, in order to understand the consolidation behavior of soft ground such as subsidence, pore water pressure, horizontal displacement of soil by embankment load, measuring instruments such as pore water pressuremeter, settlement gauge, inclinometer and differential settlement gauge was installed, and a piezocon penetration test was carried out step by step to confirm the increase in shear strength of the ground. Through this, it was confirmed that the shear strength of the ground is increased according to the stages of filling. In addition, by evaluating the properties of consolidation behavior, strength increase and consolidation prediction by empirical methods and theories were compared to analyze the characteristics of strength increase rate and consolidation behavior in consideration of regional characteristics.

Evaluation of Axial Behavior of Columns Strengthened with Different Transverse Reinforcements in Jacket Section (확대단면에서의 띠철근 배근 방법에 따른 보강 기둥의 중심 축하중 거동 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Sim, Jae-Il;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.81-88
    • /
    • 2018
  • The present study evaluated the effective arrangement approach of transverse reinforcement in the jacket section for seismic strengthening of reinforced concrete columns. To simulate the full-scale columns, the section dimensions were determined as $450{\times}450mm$ for non-seismic existing columns and $750{\times}750mm$ for section enlargement strengthening columns. Over-lapped channel-shape bars and prefabricated bar units were proposed for closed-hoops in the jacket section, and conventional cross-ties anchored into existing columns and V-ties were considered for the supplementary ties. Test results showed that the axial capacity of the existing column and section enlargement columns with over-lapped channel-shape hoops was similar to the nominal strength calculated using ACI 318-14 procedure whereas the section enlargement column with prefabricated bar units possessed 1.25 times higher axial capacity than the nominal prediction. Furthermore, the axial ductility ratio of the section enlargement column with prefabricated bar unit was 139% higher than that of the existing column despite the potential size effect on ductility of concrete. Thus, it can be concluded that the developed prefabricated bar unit technique is practically useful for preventing the premature buckling of longitudinal reinforcement and confining core concrete in the section enlargement strengthening columns.

The Effect of Feed Temperature On Permeate Flux During Membrane Separation (온도가 막분리 투과성능에 미치는 영향)

  • Kim, Kwang Soo;Moon, Deok Soo;Kim, Hyeon Ju;Lee, Seung Won;Ji, Ho;Jung, Hyeon Ji;Won, Hye Jung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The feed temperature has an effect on the performance during desalination of seawater by membrane separation. When the permeate flux intends to increase using the waste heat, it is necessary to analyze the effect of feed temperature precisely on the membrane performance. The experiments were carried out to investigate the performance of membranes by varying the seawater temperature from $10^{\circ}C$ to $60^{\circ}C$. The increase of permeate flux with increase of feed temperature was interpreted as the change of water viscosity and the membrane itself. While the increase of permeate flux could be predicted by the viscosity change in case of nanoflitration membrane, there exists 30% difference between the experiment data and the prediction by the viscosity change in case of reverse osmosis (RO) membrane, which seems to be due to 8% decrease of the pore size in 60caused by the contraction of membrane with the increase of temperature. Therefore, the desalination of seawater should be carried out within the range that the elevation of temperature does not cause the alteration of membrane itself even for the purpose of increasing the permeate flux.

Estimation of Storm Hydrographs in a Small Forest Watershed Using a Distributed Hydrological Model (분포형 수문모형을 이용한 산림소유역의 홍수수문곡선의 추정)

  • Lee, Sang-Ho;Woo, Bo-Myeong;Im, Sang-Jun
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • This study was conducted to simulate storm hydrographs on a small forested watershed using TOPMODEL, which is a distributed hydrological model. The Myeongseong watershed, which is 58.3 ha in size, was selected to monitor rainfall and runoff data. The Monte Carlo simulation was also used to calibrate parameters of TOPMODEL. Six rainfall-runoff pairs collected at the watershed in the year 1997 were used for parameter calibration, and eight rainfall-runoff pairs collected during the period of $1998\sim1999$ were used for validation effort. The errors of runoff volume ranged from -2.74% to 1.81%, and an average value of model efficiency in terms of runoff volume was 0.92 for the calibration period. The average value of observed peak discharge was $0.324m^3\;s^{-1}$ for six rainfall-runoff pairs, while the prediction value was $0.295m^3\;s^{-1}$. The simulation errors of peak discharge varied according to rainfall characteristics and antecedent condition, within ranges of -27.65% to -1.13%. The model efficiency for the validation period was 0.92. For the validation period, observed peak discharges have an average value of $0.087m^3\;s^{-1}$ and average value of simulated peak discharge was $0.090m^3\;s^{-1}$. Observed and simulated values of time to peak for the calibration period were 18.3 hrs and 11.0 hrs, respectively, and 16.6 hrs and 13.5 hrs, respectively, for the validation period.

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.