• Title/Summary/Keyword: Six degree of freedom

Search Result 161, Processing Time 0.028 seconds

Stability Analysis of a Small Racing Boat in Steady Wind and Wave Impact (바람과 파랑충격을 고려한 소형경주정의 안정성해석)

  • S.H. Chun;H.H. Chun;M.K. Ha;M. Nakato
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 1999
  • The simulation results of a small racing boat racing in steady wind and encountering waves are investigated by Nakato & Ha. The simulation of the race running is realized by referring the measured data of boats and the motions are described by a set of equations of motion in six degree of freedom as generals used in the aerodynamics. In this report, Nakato & Ha's motion equations are modified by equipping the flaps to generate the lift. The flaps of the racing boat could restrain considerably the boat from capsizing caused by superposed external disturbances, wind and encountering waves.

  • PDF

Numerical Analysis on Separation Dynamics of Strap-On Boosters in the Dense Atmosphere

  • Choi, Seongjin;Ko, Soon-Heum;Kim, Chongam;Rho, Oh-Hyun;Park, Jeong-joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.1-18
    • /
    • 2001
  • A numerical technique for simulating the separation dynamics of strap-on boosters jettisoned in the dense atmosphere is presented. Six degree of freedom rigid body equations of motion are integrated into the three-dimensional unsteady Navier-Stokes solution procedure to determine the dynamic motions of strap-ons. An automated Chimera overlaid grid technique is introduced to achieve maximum efficiency for multi-body dynamic motion and a domain division technique is implemented in order to reduce the computational cost required to find interpolation points in the Chimera grids. The flow solver is validated by comparing the computed results around the Titan IV launch vehicle with experimental data. The complete analysis process is then applied to the. H-II launch vehicle, the central rocket in japans space program, the CZ-3C launch vehicle developed in China and the KSR-III, a three-stage sounding rocket being developed in Korea. From the analyses, separation trajectories of strap-on boosters are predicted and aerodynamic characteristics around the vehicles at every time interval are examined. In addition, separation-impulse devices generally introduced for safe separation of strap-ons are properly modeled in the present paper and the jettisoning force requirements are examined quantitatively.

  • PDF

A Study on the Behavior of Spheroid Configuration Bobbin (회전타원체 보빈 형상의 거동에 관한 연구)

  • Kang, Seung-Hee;Ahn, Sung-Ho;Rim, One-Kwon;Kim, Hye-Ung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.717-724
    • /
    • 2010
  • The initial trajectory of a spheroid configuration bobbin for precision guidance has been investigated by analyzing its aerodynamic load and six-degree-of-freedom motion. The effects of changes in the spheroidal head configuration, flow angle and lateral center-of-gravity offset are numerically studied using the commercial software "FLUENT". A wind tunnel test is also conducted to validate the numerical scheme and to examine effect of the Reynolds number on the flow around the bobbin. It is shown that the size of the separation bubble formed on the surface decreases significantly when the Reynolds number is varied between 110,000 and 140,000. At a zero flow angle, an oblate spheroidal head shows relatively moderate rotation while a prolate spheroidal head shows rapid rotation. The bobbin with a spherical head shape has little effect on the flow direction; however, the oblate bobbin is sensitive to the flow angle. The roll motion of the bobbin is greatly influenced by the lateral center-of-gravity offset and maximum dispersion is observed at half of the radius.

Reconfigurable Flight Control System Design Using Sliding Mode Based Model Following Control Scheme

  • Cho, Dong-Hyun;Kim, Ki-Seok;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, a reconfigurable flight control system is designed by applying the sliding mode control scheme. The sliding mode control method is a nonlinear control method which has been widely used because of its merits such as robustness and flexibility. In the sliding mode controller design, the signum function is usually included, but it causes the undesirable chattering problem. The chattering phenomenon can be avoided by using the saturation function instead of signum function. However, the boundary layer of the sliding surface should be carefully treated because of the use of the saturation function. In contrast to the conventional approaches, the thickness of the boundary layer of our approach does not need to be small. The reachability to the boundary layer is guaranteed by the sliding mode controller. The fault detection and isolation process is operated based on a sliding mode observer. To evaluate the reconfiguration performance, a numerical simulation using six degree-of-freedom aircraft dynamics is performed.

Formation Control of a Group of Underactuated Autonomous Underwater Vehicles (작동기수가 부족한 자율무인잠수정 그룹의 편대제어기법)

  • Li, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook;Lim, Yong-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1197-1204
    • /
    • 2008
  • This paper presents an asymptotic formation control scheme for a group of underactuated autonomous underwater vehicles (AUVs) where only three control inputs - surge force, yaw moment and pitch moment are available for each vehicle's six degree of freedom (DOF) underwater motion. Usually, the dynamics agents applied in most of the formation algorithms presented so far have been modeled as particle systems, which is a simple double-integrator system. Therefore, these algorithms cannot be directly applicable to the practical systems, especially to the underwater vehicles whose dynamics are highly nonlinear. Moreover, the vehicles considered in this paper are underactuated. The formation control is derived using general potential function method, and the corresponding potential function consists of two parts: interactions between vehicles and virtual-leader following. Proposed formation scheme guarantees asymptotic local stability of closed-loop system. Numerical simulations are carried out to illustrate the effectiveness of proposed formation scheme.

Output-error state-space identification of vibrating structures using evolution strategies: a benchmark study

  • Dertimanis, Vasilis K.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.17-37
    • /
    • 2014
  • In this study, four widely accepted and used variants of Evolution Strategies (ES) are adapted and applied to the output-error state-space identification problem. The selection of ES is justified by prior strong indication of superior performance to similar problems, over alternatives like Genetic Algorithms (GA) or Evolutionary Programming (EP). The ES variants that are being tested are (i) the (1+1)-ES, (ii) the $({\mu}/{\rho}+{\lambda})-{\sigma}$-SA-ES, (iii) the $({\mu}_I,{\lambda})-{\sigma}$-SA-ES, and (iv) the (${\mu}_w,{\lambda}$)-CMA-ES. The study is based on a six-degree-of-freedom (DOF) structural model of a shear building that is characterized by light damping (up to 5%). The envisaged analysis is taking place through Monte Carlo experiments under two different excitation types (stationary / non-stationary) and the applied ES are assessed in terms of (i) accurate modal parameters extraction, (ii) statistical consistency, (iii) performance under noise-corrupted data, and (iv) performance under non-stationary data. The results of this suggest that ES are indeed competitive alternatives in the non-linear state-space estimation problem and deserve further attention.

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

Work-Leisure Balance of Employed Young-Single-Households (청년 취업 1인가구의 일과 여가의 균형에 대한 연구)

  • Yang, Jimyeong;Jeong, YeongKeum
    • Journal of Family Resource Management and Policy Review
    • /
    • v.23 no.2
    • /
    • pp.17-40
    • /
    • 2019
  • The purpose of this study is to analyze the present condition of work-leisure balance and its influencing factors in employed young single households. Three groups of sample households-work-oriented, balanced, and leisure-oriented-were compared by factors related to work and leisure. Six cases were interviewed to obtain qualitative data on the subjective meaning of work-life balance and its influencing factors. The results showed different characteristics between the three groups based on the various work- and -leisure- related factors: average weekly working hours of the week, number of vacation days per year, weekday leisure time, degree of weekday freedom, and sufficiency of the leisure cost. In addition, the characteristics considered desirable for quality of life differed between groups. Finding the meaning of life through work and leisure was very important for those respondents, who have an unstable position in the labor market, and who want to delay making decisions on moving into the marriage and family-building phase recognized as a major development task for Korean adults.

Hydroelastic Responses for a Ship Advancing in Waves (파랑중 전진하는 선박의 유탄성 응답)

  • 이호영;임춘규;정형배
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.16-21
    • /
    • 2003
  • The very large container ships have been built recently and those ships have very small structural rigidity compared with the other conventional ships. As a result, the destruction of ship hull is occurred by the springing including to warping phenomena due to encounter waves. In this study, the solutions of hydrodynamic coefficients are obtained by solving the three dimensional source distribution method and the forward speed Green function representing a translating and pulsating source potential for infinite water depth is used to calculating the integral equation. The vessel is longitudinally divided into various sections and the added mass, wave damping and wave exciting forces of each section is calculated by integrating the dynamic pressures over the mean wetted section surface. The equations for six degree freedom of motions is obtained for each section in the frequency domain and stiffness matrix is calculated by Euler beam theory. The computations are carried out for very large ship and effects of bending and torsional ridigity on the wave frequency and angle are investigated.

Trajectory Guidance and Control for a Small UAV

  • Sato, Yoichi;Yamasaki, Takeshi;Takano, Hiroyuki;Baba, Yoriaki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • The objective of this paper is to present trajectory guidance and control system with a dynamic inversion for a small unmanned aerial vehicle (UAV). The UAV model is expressed by fixed-mass rigid-body six-degree-of-freedom equations of motion, which include the detailed aerodynamic coefficients, the engine model and the actuator models that have lags and limits. A trajectory is generated from the given waypoints using cubic spline functions of a flight distance. The commanded values of an angle of attack, a sideslip angle, a bank angle and a thrust, are calculated from guidance forces to trace the flight trajectory. To adapt various waypoint locations, a proportional navigation is combined with the guidance system. By the decision logic, appropriate guidance law is selected. The flight control system to achieve the commands is designed using a dynamic inversion approach. For a dynamic inversion controller we use the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics, which include angle of attack, sideslip angle, and bank angle. Some numerical simulations are conducted to see the performance of the proposed guidance and control system.