• Title/Summary/Keyword: Six Degrees of Freedom

Search Result 175, Processing Time 0.032 seconds

Error Quantification of Photogrammetric 6DOF Pose Estimation (사진계측기반 6자유도 포즈 예측의 오차 정량화)

  • Kim, Sang-Jin;You, Heung-Cheol;Reu, Taekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.350-356
    • /
    • 2013
  • Photogrammetry has been widely used for measuring the important physical quantities in aerospace areas because it is a remote and non-contact measurement method. In this study, we analyzed photogrammetric error which can be occur in six degrees of freedom(6DOF) analysis among coordinates systems with single camera. Error analysis program were developed, and validated using geometric problem converted from imaging process. We analogized that the statistic from estimated camera pose which is need to 6DOF analysis is normally distributed, and quantified the photogrammetric error using estimated population standard deviation.

Modeling of flat otter boards motion in three dimensional space (평판형 전개판의 3차원 운동 모델링)

  • Choe, Moo-Youl;Lee, Chun-Woo;Lee, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

Geometrically Linear and Non-linear Analysis of Plates and Shells Resting on Arbitrary Elastic Edge Supports (임의의 탄성 경계 지점으로 지지된 판과 쉘의 기하학적 선형 및 비선형해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.11-21
    • /
    • 2008
  • A linear and non-linear analysis for plates and shells with arbitrary edge supports subjected to various loading was presented. The 9-node ANS(Assumed Natural Strain) hell element was employed and the spring element, which could express an arbitrary edge support using the six degrees of freedom, was introduced. For the application of his analysis, the plates and shells with various edge supports were analyzed, and the ending behavior with these edge supports were obtained accurately. For these edge supports, particularly elastic edge support was simulated by six springs and reasonable results were obtained. The results show that the present method can be widely used to analyze the bending behavior of plates and shells with arbitrary edge conditions.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

Productive performance of Mexican Creole chickens from hatching to 12 weeks of age fed diets with different concentrations of metabolizable energy and crude protein

  • Matus-Aragon, Miguel Angel;Gonzalez-Ceron, Fernando;Salinas-Ruiz, Josafhat;Sosa-Montes, Eliseo;Pro-Martinez, Arturo;Hernandez-Mendo, Omar;Cuca-Garcia, Juan Manuel;Chan-Diaz, David Jesus
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1794-1801
    • /
    • 2021
  • Objective: The study aimed to evaluate the productive performance, carcass yield, size of digestive organs and nutrient utilization in Mexican Creole chickens, using four diets with different concentrations of metabolizable energy (ME, kcal/kg) and crude protein (CP, %). Methods: Two hundred thirty-six chickens, coming from eight incubation batches, were randomly distributed to four experimental diets with the following ME/CP ratios: 3,000/20, 2,850/19, 2,700/18 and 2,550/17. Each diet was evaluated with 59 birds from hatching to 12 weeks of age. The variables feed intake (FI), body weight gain (BWG), feed conversion (FC), mortality, carcass yield, size of digestive organs, retention of nutrients, retention efficiency of gross energy (GE) and CP, and excretion of N were recorded. Data were analyzed as a randomized block design with repeated measures using the GLIMMIX procedure of SAS, with covariance AR (1) and adjustment of degrees of freedom (Kendward-Roger), the adjusted means were compared with the least significant difference method at a significance level of 5%. Results: The productive performance variables BWG, mortality, carcass yield, fat and GE retention and excretion of N were not different (p>0.05) due to the diet effect. In the 3,000/20 diet, the chickens had lower values of FI, FC, crop weight, gizzard weight, retention, and retention efficiency of CP (p<0.05) than the chickens of the 2,550/17 diet. Conclusion: The Mexican Creole chickens from hatching to 12 weeks of age can be feed with a diet with 2,550 kcal ME and 17% CP, without compromising productive parameters (BWG, mortality, carcass yield) but improving retention and retention efficiency of CP.

SPIF-A: on the development of a new concept of incremental forming machine

  • Alves de Sousa, R.J.;Ferreira, J.A.F.;Sa de Farias, J.B.;Torrao, J.N.D.;Afonso, D.G.;Martins, M.A.B.E.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.645-660
    • /
    • 2014
  • This paper presents the design and project of an innovative concept for a Single Point Incremental Forming (SPIF) Machine. Nowadays, equipment currently available for conducting SPIF result mostly from the adaptation of conventional CNC machine tools that results in a limited range of applications in terms of materials and geometries. There is also a limited market supply of equipment dedicated to Incremental Sheet Forming (ISF), that are costly considering low batches, making it unattractive for industry. Other factors impairing a quicker spread of SPIF are large forming times and poor geometrical accuracy of parts. The following sections will depict the development of a new equipment, designed to overcome some of the limitations of machines currently used, allowing the development of a sounding basis for further studies on the particular features of this process. The equipment here described possesses six-degrees-of freedom for the tool, for the sake of improved flexibility in terms of achievable tool-paths and an extra stiffness provided by a parallel kinematics scheme. A brief state of the art about the existing SPIF machines is provided to support the project's guidelines.

Stiffness Modeling of a Low-DOF Parallel Robot (저자유도 병렬형 로봇의 강성 모델링)

  • Kim, Han-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • This paper presents a stiffness modeling of a low-DOF parallel robot, which takes into account of elastic deformations of joints and links, A low-DOF parallel robot is defined as a spatial parallel robot which has less than six degrees of freedom. Differently from serial chains in a full 6-DOF parallel robot, some of those in a low-DOF parallel robot may be subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each serial chain can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness of an F-DOF parallel robot can be modeled such that the moving platform is supported by 6 springs related to the reciprocal screws of actuations (F) and constraints (6-F). A general $6{\times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints, The compliance of each spring can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; a link is modeled as an Euler beam and the compliance matrix of rotational or prismatic joint is modeled as a $6{\times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is infinite. By summing joint and link compliance matrices with respect to a reference frame and applying unit reciprocal screw to the resulting compliance matrix of a serial chain, the compliance of a spring is determined by the resulting infinitesimal displacement. In order to illustrate this methodology, the stiffness of a Tricept parallel robot has been analyzed. Finally, a numerical example of the optimal design to maximize stiffness in a specified box-shape workspace is presented.

Comparative Experimental Study on Sloshing Impact Loads of LNG Cargoes in Membrane Containment System of 160K LNGC (160K LNGC 멤브레인 화물창에 작용하는 슬로싱 충격 하중에 대한 비교 실험 연구)

  • Kwon, Chang Seop;Lee, Young Jin;Kim, Hyun Joe;Lee, Dong Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • A new state-of-the-art sloshing research equipment has developed to perform the model test of LNG tanks for the safer design of LNG cargo containment system in violent sloshing phenomena. This sloshing test system has developed by the Samsung Ship Model Basin (SSMB) and thoroughly verified. The accuracy of the motion of hexapods equipment for the excitation of a model tank has been verified. The maximum displacement in six degrees of freedom, harmonic motions of various frequencies, and irregular motions in wave conditions are measured and compared with input signals. In order to confirm the reliability of the post-processing program for measured impact pressure, the post-processed results were compared with those of the reference institute. A benchmarking sloshing test using 1/50 scale model of 160K LNGC tank was conducted for the verification of the whole testing system. The partial filing levels were considered. As a result of the experiment, it is confirmed that the results are in good agreement with those of the reference institute.