DOI QR코드

DOI QR Code

SPIF-A: on the development of a new concept of incremental forming machine

  • Alves de Sousa, R.J. (TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago) ;
  • Ferreira, J.A.F. (TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago) ;
  • Sa de Farias, J.B. (TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago) ;
  • Torrao, J.N.D. (TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago) ;
  • Afonso, D.G. (TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago) ;
  • Martins, M.A.B.E. (TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago)
  • Received : 2013.04.03
  • Accepted : 2014.02.01
  • Published : 2014.03.10

Abstract

This paper presents the design and project of an innovative concept for a Single Point Incremental Forming (SPIF) Machine. Nowadays, equipment currently available for conducting SPIF result mostly from the adaptation of conventional CNC machine tools that results in a limited range of applications in terms of materials and geometries. There is also a limited market supply of equipment dedicated to Incremental Sheet Forming (ISF), that are costly considering low batches, making it unattractive for industry. Other factors impairing a quicker spread of SPIF are large forming times and poor geometrical accuracy of parts. The following sections will depict the development of a new equipment, designed to overcome some of the limitations of machines currently used, allowing the development of a sounding basis for further studies on the particular features of this process. The equipment here described possesses six-degrees-of freedom for the tool, for the sake of improved flexibility in terms of achievable tool-paths and an extra stiffness provided by a parallel kinematics scheme. A brief state of the art about the existing SPIF machines is provided to support the project's guidelines.

Keywords

References

  1. Aerens, R., Eyckens, P., Van Bael, A. and Duflou, J.R. (2009), "Force prediction for single point incremental forming deduced from experimental and FEM observations", Int. J. Adv. Manufact. Tech., 46, 969-982.
  2. Allwood, J.M., Houghton, N.E. and Jackson, K.P. (2005), "The design of an incremental forming machine", Proceedings of the 11th Conference on Sheet Metal, 471-478.
  3. Ambrogio, G., De Napoli, L., Filice, L., Gagliardi, F. and Muzzupappa, M. (2005), "Application of incremental forming process for high customized medical product manufacturing", J. Mater. Proc. Tech., 162, 156-162.
  4. Amino, H., Lu, Y., Maki, T., Osawa, S., Fukuda, K. and Dieless, N.C. (2002), "Forming, prototype of automotive service parts", Proceedings of the 2nd International Conference on Rapid Prototyping and Manufacturing (ICRPM), Beijing.
  5. Araghi, B., Manco, G.L., Bambach, M. and Hirt, G. (2009), "Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming", CIRP Annal., Manuf. Tech., 58, 225-228. https://doi.org/10.1016/j.cirp.2009.03.101
  6. Ceretti, E., Giardini, C. and Attanasio, A. (2004), "Experimental and simulative results in sheet incremental forming on CNC machines", J. Mater. Proc. Tech., 152, 176-184. https://doi.org/10.1016/j.jmatprotec.2004.03.024
  7. Dejardin, S., Thibaud, S., Gelin, J.C. and Michel, G. (2010), "Experimental investigations and numerical analysis for improving knowledge of incremental sheet forming process for sheet metal parts", J. Mater. Proc. Tech., 210, 363-369. https://doi.org/10.1016/j.jmatprotec.2009.09.025
  8. Duflou, J.R., Callebaut, B., Verbert, J. and De Baerdemaeker, H. (2007), "Laser assisted incremental forming: formability and accuracy improvement", Ann. CIRP, 56, 273-276. https://doi.org/10.1016/j.cirp.2007.05.063
  9. Duflou, J.R., Szekeres, A. and VanHerck, A. (2005), "Force measurements for single point incremental forming and experimental study", J. Adv. Mater. Res., 6-8, 441-448. https://doi.org/10.4028/www.scientific.net/AMR.6-8.441
  10. Duflou, J.R., Tunckol, Y., Szekeres, A. and Vanherck, P. (2007), "Experimental study on force measurements for single point incremental forming", J. Mater. Proc. Tech., 189, 65-72. https://doi.org/10.1016/j.jmatprotec.2007.01.005
  11. Durante, M., Formisano, A., Langella, A. and Minutolo, F. (2009), "The influence of tool rotation on an Incremental Forming Process", J. Mater. Proc. Tech., 209, 4621-4626. https://doi.org/10.1016/j.jmatprotec.2008.11.028
  12. Filice, L., Fratini, L. and Micari, F. (2002), "Analysis of material formability in incremental forming", Annal. CIRP, 51, 199-202. https://doi.org/10.1016/S0007-8506(07)61499-1
  13. Franzena, V., Kwiatkowskia, L., Martins, P. and Tekkayaa, A. (2009), "Single point incremental forming of PVC", J.Mater. Proc. Tech., 209, 462-469. https://doi.org/10.1016/j.jmatprotec.2008.02.013
  14. Fratini, L., Ambrogio, G., Di Lorenzo, R., Filice, L. and Micari, F. (2004), "Influence of mechanical properties of the sheet material on formability in single point incremental forming", J. Mater. Proc. Tech., 153-154, 501-507. https://doi.org/10.1016/j.jmatprotec.2004.04.139
  15. Ham, M. and Jeswiet, J. (2007), "Forming limit curves in single point incremental forming", Annal. CIRP, 56, 277-280. https://doi.org/10.1016/j.cirp.2007.05.064
  16. Hussain, G. and Gao, L. (2007), "A novel method to test the thinning limits of sheet metals in negative incremental forming", Int. J. Mach. Tool. Manuf., 47, 419-435. https://doi.org/10.1016/j.ijmachtools.2006.06.015
  17. Jackson, K., Allwood, J. and Landert, M. (2008), "Incremental forming of sandwich panels", J. Mater. Proc. Tech., 204, 290-303. https://doi.org/10.1016/j.jmatprotec.2007.11.117
  18. Jeswiet, J., Hagan, E. and Szekeres, A. (2002), "Forming parameters for incremental forming of aluminium alloy sheet metal", Proc. Int. Conf. Mech. Eng., Part B: Eng. Manuf., 216, 1367-1371.
  19. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J. and Allwood, J. (2005), "Asymmetric single point incremental forming of sheet metal", CIRP Annal. Manuf. Tech., 54(2), 88-114. https://doi.org/10.1016/S0007-8506(07)60021-3
  20. Kopac, J. and Kampus, Z. (2005), "Incremental sheet metal forming on CNC milling machine-tool", J. Mater. Proc. Tech., 162-163, 622-628. https://doi.org/10.1016/j.jmatprotec.2005.02.160
  21. Lamminen, L., Tuominen, T. and Kivivuori, S. (2005), "Incremental sheet forming with an industrial robotforming limits and their effects on component design", Proceedings of 3rd International Conference on Advanced Materials Processing (ICAMP-3), Finland.
  22. Matlab User's Help Guide, Mathworks Corporation.
  23. Meier, H., Dewald, O. and Zhang, J. (2005), Development of a Robot-Based Sheet Metal Forming Process", Steel Research, Issue, Dusseldorf.
  24. Micari, F., Ambrogio, G. and Filice, L. (2007), "Shape and dimensional accuracy in Single Point Incremental Forming: State of the art and future trends", J. Mater. Proc. Tech., 191, 390-395. https://doi.org/10.1016/j.jmatprotec.2007.03.066
  25. Rauch, M., Hascoet, J., Hamann, J. and Plenel, Y. (2009), "Tool path programming optimization for incremental sheet forming applications", Comput. Aid. Des., 41, 877- 885. https://doi.org/10.1016/j.cad.2009.06.006
  26. Marabuto, S.R., Afonso, D., Ferreira, J.A.F., Melo, F.Q. and Alves de Sousa, R.J. (2011), "Finding the best machine for SPIF operations: A brief discussion", Key Eng. Mater., 473, 861-868. https://doi.org/10.4028/www.scientific.net/KEM.473.861
  27. Schafer, T. and Schraft, R.D. (2004), "Incremental sheet forming by industrial robots using a hammering tool", 10thEuropean Forum on Rapid Prototyping, Association Francais de Prototypage Rapid - AFPR.
  28. Shim, M. and Park, J. (2001), "The formability of aluminum sheet in incremental forming", J. Mater. Proc. Tech., 113, 654-658. https://doi.org/10.1016/S0924-0136(01)00679-3
  29. Strano, M. (2005), "Technological representation of forming limits for negative incremental forming of Thin aluminum sheets", J. Manuf. Proc., 7, 122-129. https://doi.org/10.1016/S1526-6125(05)70089-X
  30. Terrier, M, Gimenez, M. and Hascoet, J.Y. (2005), "VERNE - a five-axis parallel kinematics milling machine", Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 219, 327-336. https://doi.org/10.1243/095440505X30177

Cited by

  1. Lubrication aspects during Single Point Incremental Forming for steel and aluminum materials vol.16, pp.3, 2015, https://doi.org/10.1007/s12541-015-0079-0
  2. Direct rapid tooling for polymer processing using sheet metal tools vol.13, 2017, https://doi.org/10.1016/j.promfg.2017.09.016
  3. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015 vol.27, 2017, https://doi.org/10.1016/j.jmapro.2017.03.014
  4. Enhancing time efficiency on single point incremental forming processes vol.9, pp.5, 2016, https://doi.org/10.1007/s12289-015-1251-x
  5. Incremental forming of Cu-35Zn brass alloy 2018, https://doi.org/10.1007/s12289-017-1373-4
  6. Single point incremental forming: state-of-the-art and prospects 2018, https://doi.org/10.1007/s12289-017-1387-y
  7. Improved Stewart platform state estimation using inertial and actuator position measurements vol.62, 2017, https://doi.org/10.1016/j.conengprac.2017.03.006
  8. Incremental Forming of Tunnel Type Parts vol.183, 2017, https://doi.org/10.1016/j.proeng.2017.04.036
  9. Integration of design rules and process modelling within SPIF technology-a review on the industrial dissemination of single point incremental forming 2018, https://doi.org/10.1007/s00170-017-1130-3
  10. Assessing 3 and 5 Degrees of Freedom Toolpath Strategy Influence on Single Point Incremental Forming vol.651-653, pp.1662-9795, 2015, https://doi.org/10.4028/www.scientific.net/KEM.651-653.1159
  11. Tool-holder working unit used for robot-based incremental sheet forming vol.968, pp.None, 2020, https://doi.org/10.1088/1757-899x/968/1/012023