• Title/Summary/Keyword: Site-specific reaction

Search Result 129, Processing Time 0.034 seconds

Population density and internal distribution range of Erwinia amylovora in apple tree branches

  • Mi-Hyun Lee;Yong Hwan Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.881-892
    • /
    • 2022
  • Fire blight in apple and pear orchards, caused by Erwinia amylovora, is a global problem. Ongoing outbreaks have occurred since 2015. In 2020, 744 orchards were infected compared with 43 orchards in 2015 in Korea. When are insufficient. In Korea, all host plants in infected orchards are buried deeply with lime to eradicate the E. amylovora outbreak within a few days. Apple trees with infected trunks and branches and twigs with infected leaves and infected blooms were collected from an apple orchard in Chungju, Chungbuk province, where fire blight occurred in 2020. We used these samples to investigate the population density and internal distribution of E. amylovora on infected branches and twigs during early season infections. Infected branches and twigs were cut at 10 cm intervals from the infected site, and E. amylovora was isolated from tissue lysates to measure population density (colony-forming unit [CFU]·mL-1). The polymerase chain reaction was performed on genomic DNA using E. amylovora specific primers. Real-time polymerase chain reaction (PCR) was performed to detect E. amylovora in asymptomatic tissue. The objective of these assays was to collect data relevant to the removal of branches from infected trees during early season infection. In infected branches, high densities of greater than 106 CFU·mL-1 E. amylovora were detected within 20 cm of the infected sites. Low densities ranging from 102 to 106 CFU·mL-1 E. amylovora were found in asymptomatic tissues at distances of 40 - 75 cm from an infection site.

Directed evolution을 이용한 (S)-Ketoprofen ethlyester의 광학분활용 Esterase의 특성 개량

  • Kim, Seung-Beom;Kim, Ji-Hui;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.445-449
    • /
    • 2003
  • As for the purpose, we first introduce an random mutation into wild-type gene to expand a mutation space, and then further recombine the mutant genes by staggered extension process PCR. As a result, we obtained the best clones 6-52 that showed a high activity and stability, from a round of error prone and staggered extension process PCR. The purified enzyme showed a similar pH stability to the wild-type enzyme and reveal a slightly high optimum pH at 12. In the optimum temperature, an identical dependency was also showed and a quite high stability in the thermal stability was obtained. Along with this, the enzyme was also stable at a reaction that supplement with a 15 % of ethanol as an additive. The addition of other solvents and surfactants did not improve the reaction and thus resulted in a similar profile to those of wild-type enzyme. The specific activity on the target compound rac-ketoprofen ethyl ester was calculated to be about 85, 000 unit, and the kinetic constants Km and Vmax were determined to be 0.2 mM and 90 mM/mg-protein/min respectively. The deduced amino acid alignment with the wild type enzyme revealed five mutations at L120P, I208V, T249A, D287H and T357A. Based on these observations, the site directed mutagenesis to delineate the mutagenic effect is under progress.

  • PDF

Chemical Modification of the Biodegradative Threonine Dehydratase from Serratia marcescens with Arginine and Lysine Modification Reagents

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 1995
  • Biodegradative threonine dehydratase purified from Serratia marcescens ATCC 25419 was inactivated by the arginine specific modification reagent, phenylglyoxal (PGO) and the lysine modification reagent, pyridoxal 5'-phosphate (PLP). The inactivation by PGO was protected by L-threonine and L-serine. The second order rate constant for the inactivation of the enzyme by PGO was calculated to be 136 $M^{-1}min^{-1}$. The reaction order with respect to PGO was 0.83. The inactivation of the enzyme by PGO was reversed upon addition of excess hydroxylamine. The inactivation of the enzyme by PLP was protected by L-threonine, L-serine, and a-aminobutyrate. The second order rate constant for the inactivation of the enzyme by PLP was 157 $M^{-1}min^{-1}$ and the order of reaction with respect to PLP was 1.0. The inactivation of the enzyme by PLP was reversed upon addition of excess acetic anhydride. Other chemical modification reagents such as N-ethylmaleimide, 5,5'-dithiobis (2-nitrobenzoate), iodoacetamide, sodium azide, phenylmethyl sulfonylfluoride and diethylpyrocarbonate had no effect on the enzyme activity. These results suggest that essential arginine and lysine residues may be located at or near the active site.

  • PDF

Photodynamic Action by Endogenous Non-Chlorophyll Sensitizer As a Cause of Photoinhibition

  • Suh, Hwa-Jin;Kim, Chang-Sook;Jin Jung
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2000
  • As sunlight not always optimized for every terrestrial plant in terms of light quality, quantity and duration, some plants suffer detrimental effects of sunlight exposure under certain conditions. Photoinhibition of photosynthesis is a typical phenomenon representing harmful light effects, commonly observed in many photosynthetic organisms. It is generally accepted that functional, structural loss of photosystem II complex(PSII) is the primary event of photoinhibition. Accumulating data also suggest that singlet oxygen($^1$O$_2$) is the main toxic species directly involved in it. There are two different views on the specific site and mechanism of $^1$O$_2$ production in the photosynthetic membrane. One of them favors the PSII reaction center, where the primary charge pairs recombination occurs as a prerequisite for the generation of $^1$O$_2$, and the other inclines to photosensitized $^1$O$_2$ formation by a substance located outside PSII. This article describes how we, as the advocators of the latter concept, have arrived at the conclusion that $^1$O$_2$ immediately involved in PSII photodamage is largely generated from the Rieske center of the cytochrome b$_{6}$/f complex and diffuses into PSII, attacking the reaction center subunits.s.

  • PDF

Triple-layer Surface Complexation Modeling on the Adsorption of cs-137 and Sr-90 onto Kaolinite: Effect of Groundwater Ions and pH (캐올리나이트의 셰슘-137 및 스트론튬-90 흡착에 대한 삼중층 표면복합반응 모델링: 지하수 이온성분 및 pH의 영향)

  • 정찬호;박상원;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.106-116
    • /
    • 1998
  • The adsorption of Cs-137 and Sr-90 onto kaolinite in prescence of major groundwater cations (Ca2+, K+, Na+) with different concentrations was simulated by using triple-layer surface complexation model (TL-SCM). The site density (8.73 sites/nm2) of kaolinite used for TL-SCM was calculated from it's CEC and specific surface area. TL-SCM modeling results indicate that concentrations dependence on 137Cs and 90Sr adsorption onto kaolinite as a function of pH is best modeled as an outer-sphere surface reaction. This suggests that Cs+ and Sr2+ are adsorbed at the $\beta$-layer in kaolinite-water interface where the electrolytes, Nacl, KCl and CaCl2, bind. However, TL-SCM results on Sr adsorption show a discrepancy between batch data and fitting data in alkaline condition. This may be due to precipitation of SrCO3 and complexation such as SrOH+. Intrinsic reaction constants of ions obtained from model fit are as follows: Kintcs=10-2.10, KintSr=10-2.30, KintK=10-2.80, KintCa=10-3.10 and KintNa=10-3.32. The results are in the agreement with competition order among groundwater ions (K+>Ca2+>Na+) and sorption reference of nuclides (Cs-137>Sr-90) at kaolinite-water interface showed in batch test.

  • PDF

Oxime Generation of Silk Fibers by Hydroxlammonium choride treatment

  • Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.2
    • /
    • pp.116-121
    • /
    • 1999
  • This study was aimed to explain the essence of Hydroxylammonium hydrochloride(H.A.) effect on degummed silk fiber increasing the colour sites due to oxime generating reaction. H.A. in aqueous solution caues to increase the amount of [H+] and reduce pH values as the concentration of H.A. increases. The rate of [H+] absorption of silk fiker in acidic solution differs on the basic of solution pH and shows a specific uptake in each pH, the lower the pH of solution, the higher the amount [H+] absorption. The pH of solution after treating of silk fiber in H.A. and HCl, showed more remaining [H+] in H.A. solution due to [H+] releasing under the procedure of oxime production. Also it was revealed that in higher concentration of H.A. the reaction for oxime fixation in silk fiber carried out stonger and as a result the bigger gap with acid uptake curve appeared. FT-IR analysis of silk fiber treated with H.A. revealed the creating of intermolecular H-bond at the 2,981-2.930 cm-1, which was not appeared for nontraeted silk fibers and shows H-bond between N-OH group in oue chain and C=) group in another chain of silk protein. Colourimetry of dyed silk fiber after H.A. tratment showed that the silk fiber treated with the high concentration of H.A. compare to low concentration, absorbed more dyeing molecules and so Showed less percontage of Whiteness.

  • PDF

Capacitation-associated Changes in Protein-tyrosine-phosphorylation, Hyperactivation and Acrosome Reaction in Guinea Pig Sperm

  • Kong, Li-Juan;Shao, Bo;Wang, Gen-Lin;Dai, Ting-Ting;Xu, Lu;Huang, Jing-Yan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.181-189
    • /
    • 2008
  • The aim of this study was to evaluate the effects of $Ca^{2+}$, $HCO_3{^-}$ and BSA on the in vitro capacitation-associated protein tyrosine phosphorylation, hyperactivation and acrosome reaction in guinea pig sperm. Caudal epididymal sperm were incubated in four different groups: modified TALP (Tyrode's albumin lactate pyruvate) or TALP without one of the medium constituents ($Ca^{2+}$, $HCO_3{^-}$ and BSA). After incubation for the required time (0 h, 0.5 h, 1 h, 3 h, 5 h, and 7 h), sperm were removed for further experiment. The capacitation effect was assessed by CTC (Chlortetracycline) staining. Western blotting and indirect immunofluorescence were used to analyze the level and localization of tyrosine phosphorylation. The results showed that guinea pig sperm underwent a time-dependent increase in protein tyrosine phosphorylation during the in vitro capacitation and the percentage of protein tyrosine phosphorylated sperm increased from 36% to 92% from the beginning of incubation to 7 h incubation. Also, there was a shift in the site of phosphotyrosine-specific fluorescence from the head of sperm to both the head and the flagellum. Moreover, an absence of $Ca^{2+}$ or $HCO_3{^-}$ inhibited in vitro hyperactivation and acrosome reaction and decreased the phosphorylation of the proteins throughout the period of in vitro capacitation. However, an absence of BSA could not influence these processes if substituted by polyvinyl alcohol (PVA) in the medium.

The Characteristics of I269S and I224S Double Mutant Horse Liver Alcohol Dehydrogenase (I269S와 I224S 이중변이 알코올 탈수소효소의 특성)

  • Ryu, Ji-Won;Lee, Kang-Man
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.756-764
    • /
    • 1997
  • Ile-224 in I269S mutant horse liver alcohol dehydrogenase isoenzyme S (HLADH-S) was mutated to serine by site-directed mutagenesis in order to study the role of the residue in c oenzyme binding to the enzyme. The specific activity of the I269S and I224S mutant enzyme to ethanol was increased 6-fold and all Michaelis constants($K_a,\;K_b,\;K_p,\;and\;K_q$,/TEX>) were larger than those for the wild-type and I269S enzyme. The substitution decreased the afffinity to coenzymes and increased the specific activity of the enzyme. The mutant enzyme showed the highest catalytic efficiency for octanol among the primary alcohols. But it didn`t have activities on retinoids and 5${\beta}$-cholanic acid-3-one. From these results, it was confirmed that the hydrophobic interaction of Ile-224 residue with coenzyme was related to coenzyme affinity in ADH reaction. The substitution also affected the substrate affinities to the enzyme.

  • PDF

DNA Structural Perturbation Induced by the CPI-Derived DNA Interstrand Cross-linker : Molecular Mechanisms for the Sequence Specific Recognition

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • The highly potent cytotoxic DNA-DNA cross-linker consists of two cyclopropa[c]pyrrolo[3,4-3]indol-4(5H)-ones insoles [(+)-CPI-I] joined by a bisamido pyrrole (abbreviated to "Pyrrole"). The Pyrrole is a synthetic analog of Bizelesin, which is currently in phase II clinical trials due to its excellent in vivo antitumor activity. The Pyrrole has 10 times more potent cytotoxicity than Bizelesin and mostly form DNA-DNA interstrand cross-links through the N3 of adenines spaced 7 bp apart. The Pyrrole requires a centrally positioned GC base pair for high cross-linking reactivity (i.e., $5^1$-T$AT_2$A*-$3^1$), while Bizelesin prefers purely AT-rich sequences (i.e., $5^1$-T$AT_4$A*-$3^1$, where /(equation omitted) represents the cross-strand adenine alkylation and A* represents an adenine alkylation) (Park et al., 1996). In this study, the high-field $^1$H-NMR and rMD studies are conducted on the 1 1-mer DNA duplex adduct of the Pyrrole where the 5′(equation omitted)TAGTTA*-3′sequence is cross-linked by the drug. A severe structural perturbation is observed in the intervening sequences of cross-linking site, while a normal B-DNA structure is maintained in the region next to the drug-modified adenines. Based upon these observations, we propose that the interplay between the bisamido pyrrole unit of the drug and central C/C base pair (hydrogen-bonding interactions) is involved in the process of cross-linking reaction, and sequence specificity is the outcome of those interactions. This study suggests a mechanism for the sequence specific cross-linking reaction of the Pyrrole, and provides a further insight to develop new DNA sequence selective and distortive cross-linking agents.

  • PDF

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.