• Title/Summary/Keyword: Sinusoidal aperture

Search Result 9, Processing Time 0.032 seconds

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

An Optimum Design of the Shaped Cassegrainian Antenna (수정 곡면 카세그레인 안테나의 최적 설계)

  • Ryu, Hwang;Kim, Ik-Sang
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The purpose of this paper is an optimum design of the shaped Cassegrainian antenna system for the base station. The process of the shaped Cassegrainian antenna design is as follows : 1) the aperture field distribution is determined so as to meet design specifications, 2) a proper design parameter is selected, 3) extracting of the dimension data for the main and sub-reflector antenna To do these, Hansen's distribution is chosen as the aperture field, and the far-field pattern from the aperture is predicted by the angular spectrum. Firstly, the aperture field distribution is designed to satisfy the specification for design frequency, it is confirmed if this distribution meet the specification for another frequency band. The main- and the sub-reflectors are synthesized so as for the given beamwaveguide feed pattern to be transformed into the prescribed aperture distribution. The designed system has circular aperture, left-right symmetry and no tilted structure. The continuous surface functions of reflectors are obtained by adopting the global interpolation technique to the discrete reflector profiles. Jacobi polynomial-sinusoidal is used as the basis function. A Ka-band Cassegrainian antenna operates over 17.7 – 20.2 GHz for down-link band and 27.5 – 30 GHz for up-link band is designed.

  • PDF

Autofocus Phase Compensation of Velocity Disturbed UUV by DPC Processing with Multiple-Receiver (다중 수신기 DPC 처리에 의한 속도 교란 수중 무인체의 자동초점 위상 보상)

  • Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1973-1980
    • /
    • 2017
  • In the case of a small UUV operating an active synthetic aperture sonar, various velocity disturbances may occur on the path due to the influence of external underwater environment, and this causes phase errors in coherent synthetic aperture processing, which has a large influence on the detected image. In this paper, when a periodic sinusoidal velocity disturbance is generated in the traveling direction, the phase generated by the round trip slope range at each position is estimated the cross correlation coefficient for multiple received signals and compensated the position variation in the overlapped DPC by the average value within the maximum allowable width. Through simulations, it has been confirmed that the images degraded by the velocity disturbance amplitude and fluctuating frequency of the UUV are removed from the false targets and the performance of azimuth resolution is improved by the proposed phase compensation method.

Accurate Roughness Measurement Using a Method for Evaluation and Interpolation of the Validity of Height Data from a Scanning White-light Interferometer

  • Kim, Namyoon;Lee, Seung Woo;I, Yongjun;Pahk, Heui-Jae
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.604-612
    • /
    • 2017
  • An effective and precise method using a scanning white-light interferometer (SWLI) for three-dimensional surface measurements, in particular for roughness measurements, has been proposed. The measurement of a microscopically sloped area using an interferometer has limitations, due to the numerical aperture of the lens. In particular, for roughness measurements, it is challenging to obtain accurate height data for a sloped area using the interferometer, due to diffraction of the light. Owing to these optical limitations of the interferometer for roughness measurements, the Ra measurements performed using an interferometer contain errors. To overcome the limitations, we propose a method consisting of the following two steps. First, we evaluate the height data and set the invalid height area to be blank, using the characteristics of the modulus peak, which has a low peak value for signals that have low reliability in the interferogram. Next, we interpolate the blank area using the adjacent reliable area. Rubert roughness standards are used to verify the proposed method. The results obtained by the proposed method are compared to those obtained with a stylus profilometer. For the considered sinusoidal samples, Ra ranges from $0.053{\mu}m$ to $6.303{\mu}m$, and we show that the interpolation method is effective. In addition, the method can be applied to a random surface where Ra ranges from $0.011{\mu}m$ to $0.164{\mu}m$. We show that the roughness results obtained using the proposed method agree well with profilometer results. The $R^2$ values for both sinusoidal and random samples are greater than 0.995.

Review of the Improved Moving Frame Acoustic Holography and Its Application to the Visualization of Moving Noise Sources (개선된 이동 프레임 음향 홀로그래피 방법과 이동 음원의 방사 소음의 가시화에 대한 응용)

  • 박순홍;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.669-678
    • /
    • 2000
  • This paper reviews the improved moving frame acoustic holography (MFAH) method and its application. Moving frame acoustic holography was originally proposed to increase the aperture size and the spatial resolution of hologram by using a moving line array of microphones. The hologram of scanned plane can be obtained by assuming the sound field to be product of spatial and temporal information. Although conventional MFAH was only applied to sinusoidal signals, it allows us to visualize the noise generated by moving noise sources by employing a vertical line array of microphones affixed to the ground. However, the sound field generated by moving sources becomes different from that of stationary ones due to the movement of the sources. Firstly, this paper introduces the effect of moving noise sources on the obtained hologram by MFAH and the applicability of MFAH to the visualization of moving sources. Secondly, this paper also reviews improved MFAH that can visualize a coherent narrow band noise and a pass-by noise. The practical applicability of the improved MFAH was demonstrated by visualizing tire noise during a pass-by test.

  • PDF

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Study on Physiological Summation in Peripheral Retina for Eccentric Viewing Training (중심외주시 훈련용 주변부 망막의 생리적 가중에 관한 연구)

  • Seo, Jae-Myoung;Lee, Ki-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.489-493
    • /
    • 2013
  • Purpose: This study was to investigate peripheral vision and provide people with macular degeneration with a guideline for eccentric viewing training. Methods: 30 adult subjects with normal vision took part in this study. The lateral area of $20^{\circ}$ eccentricity from the fovea of right eye was only used to measure the physiological summation. The target was sinusoidal vertical gratings within a circular aperture. The critical points in spatial and temporal summation was found to compare each other for 0.7 cpd and 3.0 cpd, respectively. Results: Critical duration and contrast sensitivity for 0.7 cpd were 540 ms and 1.1, and 315 ms and 0.98 for 3.0 cpd respectively. The critical degrees and contrast sensitivity for 0.7 cpd were $11.3^{\circ}$ and 2.8, and $5^{\circ}$ and 2.63 for 3.0 cpd respectively. Conclusions: The critical point in peripheral vision reaches relatively faster than the one in central vision. It is recommended to train the peripheral retina under the lower spatial frequency more frequently for a short time than constantly for a long time.

Analysis of the Visual Function in low Vision Patients and Normals in Canada, Using Contrast Sensitivity (대비감도를 사용한 캐나나 내 저시력 환자와 정상인의 시기능 분석)

  • Seo, Jae Myung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.3
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: It is said that persons with low vision (LV) require larger object and longer exposure time to make a visual judgment. The spatial summation stands for the increasing of contrast sensitivity (CS), as the target size is enlarged. Likewise, the term temporal summation is used when the CS increases as the exposure duration is extended. The present study investigates whether or not greater target and longer exposure duration is required for LV subjects than for control subjects. Methods: Twenty subjects with LV and twenty age-matched controls took part in the study. The CS was measured with a 2 alternative forced choice stair case for 0.7 and 3.0 cycle per degree (c/d) static sinusoidal gratings within a circular aperture. The results were analyzed by mixed ANOVA (2${\times}$2). Results: As expected, the CS in the LV group were overall depressed. For spatial summation, mixed ANOVA (2 groups${\times}$2 spatial frequencies) gave p values of 0.13 for the effect of group, 0.14 for spatial frequency and there was no interaction (p=0.59). Similarly, for temporal summation the results were p=0.19 for group, 0.31 for spatial frequency and p=0.95 for interaction. Conclusions: Despite the depression of CS in the LV group, a significant difference for spatial and temporal summation between two subject groups was not reached.

  • PDF