Analysis of the Visual Function in low Vision Patients and Normals in Canada, Using Contrast Sensitivity

대비감도를 사용한 캐나나 내 저시력 환자와 정상인의 시기능 분석

  • Seo, Jae Myung (Department of Ophthalmic Optics, Gwangju Health College University)
  • 서재명 (광주보건대학 안경광학과)
  • Received : 2009.07.26
  • Accepted : 2009.09.08
  • Published : 2009.09.30

Abstract

Purpose: It is said that persons with low vision (LV) require larger object and longer exposure time to make a visual judgment. The spatial summation stands for the increasing of contrast sensitivity (CS), as the target size is enlarged. Likewise, the term temporal summation is used when the CS increases as the exposure duration is extended. The present study investigates whether or not greater target and longer exposure duration is required for LV subjects than for control subjects. Methods: Twenty subjects with LV and twenty age-matched controls took part in the study. The CS was measured with a 2 alternative forced choice stair case for 0.7 and 3.0 cycle per degree (c/d) static sinusoidal gratings within a circular aperture. The results were analyzed by mixed ANOVA (2${\times}$2). Results: As expected, the CS in the LV group were overall depressed. For spatial summation, mixed ANOVA (2 groups${\times}$2 spatial frequencies) gave p values of 0.13 for the effect of group, 0.14 for spatial frequency and there was no interaction (p=0.59). Similarly, for temporal summation the results were p=0.19 for group, 0.31 for spatial frequency and p=0.95 for interaction. Conclusions: Despite the depression of CS in the LV group, a significant difference for spatial and temporal summation between two subject groups was not reached.

목적: 저시력 환자의 경우에 시각적 판단을 위해서 물체의 크기와 노출시간이 상대적으로 커져야 할 필요가 있다고 알려져 왔다. 물체의 크기에 따른 대비감도의 증가를 공간적 가중이라 하며 노출시간에 따른 대비감도의 증가를 시간적 가중이라 하는데 본 연구에서는 저시력 환자들이 시각적 판단 시에 실제로 정상인 보다 큰 물체와 긴 시간을 필요로 하는지 알아보고자 하였다. 방법: 20명의 저시력 환자와 20명의 정상대조군을 대상으로 원형의 사인파격자무늬를 갖는 두 개의 공간주파수 0.7c/d와 3.0c/d로 대비감도를 측정하였다. 자료 분석에는 혼합형 ANOVA(2${\times}$2)를 이용하였다. 결과: 저시력 환자에서의 대비감도는 대조군에 비하여 전반적으로 낮은 값을 보였다. 군간 공간적가중의 변화는 없었으며(p=0.13) 공간주파수간 차는 0.14였으며 이들 간의 상호작용도 유의성이 없었다(p=0.59). 마찬가지로 시간적 가중에서도 군간 시간적 가중의 변화는 통계적 유의성이 없었으며(p=0.19) 공간주파수간 차와 상호작용도 유의성이 없었다(각각 p=0.31, p=0.95). 결론: 정상대조군에 비하여 저시력 군에서 대비감도가 크게 저하되었으나 물체의 크기와 노출시간에 따른 군간 유의한 차이는 없었다.

Keywords

References

  1. Robson J. G., "Spatial and temporal contrast sensitivity function of the visual system", J. Opt. Socie. Am., 56(8):1141-1142(1966). https://doi.org/10.1364/JOSA.56.001141
  2. Lawrence E. and Arend J. R., "Response of the human eye to spatially sinusoidal gratings at various exposure durations", Vis. Res., 16(11):1311-1315(1976). https://doi.org/10.1016/0042-6989(76)90059-6
  3. Rovamo J. et al., "Modeling the dependence of contrast sensitivity on grating area and spatial frequency", Vis. Res., 33(18):2773-2788(1993). https://doi.org/10.1016/0042-6989(93)90235-O
  4. Bradley A. and Skottun B. C., "The effects of large orientation and spatial frequency differences on spatial discriminations", Vis. Res., 24(12):1889-1896(1984). https://doi.org/10.1016/0042-6989(84)90022-1
  5. 박성리, 문남주, "저시력 환자의 진료에서 대비감도 검사의 유용성", 대한안과학회지, 39(8):1788-1793(1998).
  6. 유영철, 최태훈, 이하범, "연령에 따른 정상 대비감도", 대한안과학회지, 44(1):150-156(2003).
  7. Zele A. J. et al., "Disclosing disease mechanisms with a spatio-temporal summation paradigm", Graefe's Arch. Clin. Exp. Ophthalmol., 244(4):425-432(2005). https://doi.org/10.1007/s00417-005-0121-5
  8. Brown B. and Lovie-Kitchin J. E., "Temporal summation in age-related maculopathy", Optom. Vis. Sci., 66(7):426-429(1989). https://doi.org/10.1097/00006324-198907000-00003
  9. www.who.int/entity/blindness/Change% 20the%20Definition%20of%20Blindness.pdf.
  10. Colman A. M., "Dictionary of psychology", Oxford University press, pp. 715-756(2006).
  11. Owsley C. et al., "Contrast sensitivity throughout adulthood", Vis. Res., 23(7):689-699(1983). https://doi.org/10.1016/0042-6989(83)90210-9
  12. Hess R. F. and Howell E. R., "The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification", Vis. Res., 17(9): 1049-1055(1977). https://doi.org/10.1016/0042-6989(77)90009-8
  13. Tyler C. W. and Mcbride B., "The morphonome image psychophysics software and a calibrator for macintosh systems", Spatial vis., 10(4):479-484(1997). https://doi.org/10.1163/156856897X00410
  14. Rovamo J. et al., "Modeling the dependence of contrast sensitivity on grating area and spatial frequency", Vis. Res., 33(18):2773-2788(1993). https://doi.org/10.1016/0042-6989(93)90235-O
  15. Loshin D. S. and Jones R., "Contrast sensitivity as a function of exposure duration in the amblyopic visual system", Am. Acad. Optom., 59(7):561-567(1982). https://doi.org/10.1097/00006324-198207000-00003
  16. Savage G. L., "Temporal summation for grating patches detected at low light levels", Opt. Vis. Sci., 73(6):404-412(1996). https://doi.org/10.1097/00006324-199606000-00008
  17. Luntinen O. et al., "Modeling the increase of contrast sensitivity with grating area and exposure time", Vis. Res., 35(16):2339-2346(1995). https://doi.org/10.1016/0042-6989(94)00309-A
  18. Legge G. E. et al., "Psychophysics of reading-II Low vision", Vis. Res., 25(2):253-266(1985). https://doi.org/10.1016/0042-6989(85)90118-X
  19. Breitmeyer B. G. and Ganz L., "Temporal studies with flashed gratings: inferences about human transient and sustained channels", Vis. Res., 17(7):861-865(1977). https://doi.org/10.1016/0042-6989(77)90130-4
  20. Mitsuboshi M. et al., "Temporal integration in human vision and the opponent-color systems", Vis. Res., 27(7):1187-1195(1987). https://doi.org/10.1016/0042-6989(87)90030-7
  21. Friesen L. and Friesen M., "Micropsia and visual acuity in macular edema", Albrecht. V. Graefes Arch. Klin. Exp. Ophthal., 210(2):69-77(1979). https://doi.org/10.1007/BF00409993
  22. Curcio C. A. et al., "Spare the rods, save the cones in aging and age-related maculopathy", Invest. Ophthalmol. Visual. Sci., 41(8):2015-2018(2000).