• Title/Summary/Keyword: Sinusoidal Cylinder

Search Result 30, Processing Time 0.032 seconds

PIV measurements of near wake behind a sinusoidal cylinder

  • Zhang W.;Daichin Daichin;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder at Re=5200 has been investigated using DPIV system. The velocity fields, streamlines and vorticity contours of the mean flow were compared at the nodal, saddle and middle planes with those of a right circular cylinder. For the sinusoidal cylinder, the vortex core moves downstream and the vortex formation region is expanded in streamwise direction while suppressed in transverse direction at the nodal plane. At the saddle and the middle plane the vortex spread in both streamwise and transverse directions, forming the maximum vortex region at the saddle plane.

  • PDF

Flow visualization and analysis of wake behind a sinusoidal cylinder

  • Nguyen A.T.;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.31-34
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder has been investigated quantitatively using hot-wire anemometer and qualitative. The mean velocity and turbulence intensity were measured in streamwise and spanwise direction. The results show that the wake in the saddle plane has a longer vortex formation region and rapid reversed flow than that in nodal plane. The elongated vortex formation region of sinusoidal cylinder is related with drag reduction. In addition, the flow visualized with particle tracing method support the flow characteristics of sinusoidal cylinder measured by hot-wire.

  • PDF

Numerical studies of unsteady flow field and aerodynamic forces on an oscillating 5:1 rectangular cylinder in a sinusoidal streamwise flow

  • Ma, Ruwei;Zhou, Qiang;Wang, Peiyuan;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.91-100
    • /
    • 2022
  • Numerical simulations are conducted to investigate the uniform flow (UF) and sinusoidal streamwise flow (SSF) over an oscillating 5:1 rectangular cylinder with harmonic heaving motion at initial angles of attack of α = 0° and 3° using two-dimensional, unsteady Reynolds-averaged Navier-Stokes (URANS) equations. First, the aerodynamic parameters of a stationary 5:1 rectangular cylinder in UF are compared with the previous experimental and numerical data to validate the capability of the computationally efficient two-dimensional URANS simulations. Then, the unsteady flow field and aerodynamic forces of the oscillating 5:1 rectangular cylinder in SSF are analysed and compared with those in UF to explore the effect of SSF on the rectangular cylinder. Results show that the alternative vortex shedding is disturbed by SSF both at α = 0° and 3°, resulting in a considerable decrease in the vortex-induced force, whereas the unsteady lift component induced by cylinder motion remains almost unchanged in the SSF comparing with that in UF. Notably, the strong buffeting forces are observed at α = 3° and the energy associated with unsteady lift is primarily because of the oscillations of SSF. In addition, the components of unsteady lift induced by the coupling effects of SSF and cylinder motion are discussed in detail.

Eigenfunction expansion solution and finite element solution for orthotropic hollow cylinder under sinusoidal impact load

  • Wang, X.;Dai, H.L.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 2003
  • The histories and distributions of dynamic stresses in an orthotropic hollow cylinder under sinusoidal impact load are obtained by making use of eigenfunction expansion method in this paper. Dynamic equations for axially symmetric orthotropic problem are founded and results are carried out for a practical example in which an orthotropic hollow cylinder is in initially at rest and subjected to a dynamic interior pressure $p(t)=-{\sigma}_0(sin{\alpha}t+1)$. The features of the solution appear the propagation of the cylindrical waves. The other hand, a dynamic finite element solution for the same problem is also got by making use of structural software (ABAQUS) program. Comparing theoretical solution with finite element solution, it can be found that two kinds of results obtained by two different solving methods are suitably approached. Thus, it is further concluded that the method and computing process of the theoretical solution are effective and accurate.

FSI Analysis on a Floating Cylinder by 3D Flow-Structure Interaction (FSI) Measurement System (유동-구조상관(FSI) 3차원 측정시스템에 의한 부유식 실린더 연동운동해석)

  • Doh, D.H.;Sang, J.W.;Hwang, T.G.;Pyeon, Y.B.;Baek, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1574-1579
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interactions(FSI) has been constructed and analyses on the flow field and the motion field of a floating cylinder was made. The three-dimensional vector fields around the cylinder are measured by 3D-PTV technique while the motion of the cylinder forced by the flow field is measured simultaneously with a newly developed motion tracking algorithm(bidirectional tracking algorithm). The cylinder is pendant in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced. The interaction between the flow fields and the cylinder motion is examined quantitatively.

  • PDF

CHARACTERISTICS OF THE FLOW AND HEAT TRANSFER AROUND A WAVY CYLINDER (삼차원 원형주상체의 축방향 직경변화가 열.유동장에 미치는 영향)

  • Lee, Chang-Yeol;Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.131-136
    • /
    • 2008
  • Three-dimensional characteristics of fluid flow and heat transfer around a wavy circular cylinder having sinusoidal variation in cross sectional area along the spanwise direction are numerically investigated using the immersed boundary method. The three different wavelengths of ${\pi}/4$, ${\pi}/3$ and ${\pi}/2$ and at the fixed wavy amplitude of 0.1 have been considered to investigate the effects of waviness on especially the forced convection heat transfer around a wavy cylinder when the Reynolds and Prandtl numbers are 300 and 0.71, respectively. The present computational results for a wavy cylinder are compared with those for a smooth cylinder. The time- and total surface-averaged Nusselt number for a wavy cylinder with is larger than that for a smooth cylinder, whereas that with ${\lambda}={\pi}/4$ and ${\pi}/3$ is smaller than that for a smooth cylinder. However, because the surface area exposed to heat transfer for a wavy cylinder is larger than that for a smooth cylinder, the total heat transfer rate for a wavy cylinder with different wavelengths of ${\lambda}={\pi}/4$, ${\pi}/3$ and ${\pi}/2$ is larger than that for a smooth cylinder.

  • PDF

Suppression of Wake Transition and Occurrence of Lock-on Downstream of a Circular Cylinder in a Perturbed Flow in the A-mode Instability Regime (A-mode 불안정성 영역에서 교란유동장에 놓인 원형실린더 후류의 천이지연과 유동공진의 발생)

  • Kim, Soo-Hyeon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.702-710
    • /
    • 2007
  • Direct numerical simulation (DNS) is performed to investigate suppressed wake transition and occurrence of lock-on in the wake of a circular cylinder disturbed by sinusoidal perturbation at the Reynolds number of 220 (A-mode instability regime). The sinusoidal perturbation, of which the frequency is near twice the natural shedding frequency, is superimposed on the free stream velocity. It is shown that the wake transition behind the circular cylinder can be suppressed due to the perturbation of the free stream velocity. This change causes a jump in the Strouhal number from the value corresponding to A-mode instability regime to the value corresponding to retarded wake transition regime (extrapolated from laminar shedding regime) in the Strouhal-Reynolds number relationship. As a result, vortex shedding frequency is locked on the perturbation frequency depending not on the natural shedding frequency but on the modified shedding frequency.

Motion Synchronization Algorithm using Sinusoidal Characteristics for a Dual-cylinder Mold Oscillator (몰드 오실레이터 이중구조 실린더의 정현파 진동 특성을 이용한 위치동기화 알고리즘 개발)

  • Kim, Seung Hun;Choi, Doo Chul;Kong, NamWoong;Kim, Sang Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.729-734
    • /
    • 2015
  • Improvement in the control strategy for continuous casting is a crucial requirement to enhance the slab's quality and to increase productivity. The mold oscillator adopts the dual cylinders due to its heavy weight, so the synchronized motion of two cylinders is an important aspect when precise control is needed. The conventional method uses the master-slave control applied to the valve input reference, but the synchronization performance should still be improved. This paper proposes a novel synchronization algorithm for dual cylinders used in a mold oscillator. The master-slave concept is applied to the target reference position, that is, the slave target reference position is controlled to match the slave cylinder's position with the master cylinder's position. In the simulation based on a Simulink model, the proposed algorithm shows a better synchronization performance in aspect of the mean of the absolute error and the peak synchronization error.

Torsional Elastic Waves Propagating in a Cylinder with a Periodically Corrugated Outer Surface (주기적으로 울퉁불퉁한 실린더에서 전파하는 비틂 탄성파)

  • Kim Jin Oh
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.303-306
    • /
    • 1999
  • The paper describes a theoretical study on the speed of the torsional elastic waves propagating in a circular cylinder whose outer radius varies periodically as a harmonic function of the axial coordinate. The approximate solution for the phase speed has been obtained using the perturbation technique for sinusoidal modulation of small amplitude. It is shown that the wave speed in the cylinder with a corrugated outer surface is less than that in a smooth cylinder by the square of the amplitude of the surface perturbation. This theoretical prediction agrees reasonably with an experimental observation reported earlier. It is also shown that the wave speed reduction due to the surface corrugation becomes larger for a thinner cylinder and for a bigger density of corrugation.

  • PDF

A Study on Developments of Three-dimensional Measurement System for Flow-Structure Interactions using Digital Image Processing (디지털 영상처리기술을 이용한 비접촉식 유체-구조 연동운동3차원 측정시스템 개발에 관한 연구)

  • DOH DEOG-HEE;SANG JI-WOONG;HWANG TAE-GYU;CHO YONG-BEOM;PYEON YONG-BEOM
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.274-278
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flaw-structure interactions has been developed This system consists of four CCD cameras, two for capturing instantaneous flaw fields and two for tracking a solid body. The three-dimensional vector fields around a cylinder are measured while the motion of the cylinder forced by the flow field is measured simultaneously with the constructed system The cylinder is pended in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced Reynolds number for the mean main stream is about l000. The interaction between the flaw fields and the cylinder motion is examined quantitatively.

  • PDF