• Title/Summary/Keyword: Sintering effect

Search Result 1,170, Processing Time 0.026 seconds

A Study on Changes in High-Temperature Microstructure of Coal Ash Applied as Cement Clinker Raw Material (시멘트 클링커 원료로서 적용한 석탄재의 고온 미세구조 변화 고찰)

  • Yoo, Dong-Woo;Im, Young-Jin;Kwon, Sung-Ku;Lee, Seok-Je
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2022
  • Coal ash is being considered as a source of silica and alumina for cement clinker. The purpose of this study was to investigate the effect on cement clinker sintering by confirming the high-temperature microstructural change according to the firing temperature in the cement clinker sintering process of coal ash. In the coal ash used as a raw material for cement clinker, the shape change of the particle surface was confirmed from the sintering tem perature of 950 ℃. The shape of the coal ash disappeared from the sintering temperature higher than 1250 ℃. It was confirmed that the Al and Fe components of the coal ash were converted to the cement interstitial phase at a temperature higher than 1350 ℃. In addition, the clinker using a large amount of coal ash as a raw material showed a low content of Lime and a high content of Belite in the sintering tem perature range of 1150~1200 ℃. From this, it was confirmed that the formation of calcium silicate mineral proceeds more easily at the initial sintering temperature by the application of coal ash.

Effect of Low-grade Limestone on Raw Mill Grinding and Cement Clinker Sintering (저품위 석회석이 원료밀의 분쇄성과 시멘트 클링커 소성성에 미치는 영향)

  • Yoo, Dong-Woo;Park, Tae-Gyun;Choi, Sang-Min;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.20-25
    • /
    • 2021
  • The cement clinker, the main raw material of cement, is manufactured using limestone as the main material. Depending on the quality of limestone, the use of subsidiary materials changes, and has a great influence on the production of cement clinkers. In this study, the effect of CaO content of limestone, a cement clinker material, on Raw Mill grinding and sintering of cement clinker was investigated. The grinding time of the union materials changed in the content of limestone CaO was measured to identify the grinding properties. The raw material combination was cleaned within a range of 1,350-1,500℃. The sintering performance of cement clinker by Burnability index calculation was identified. The lower the grade of limestone, the lower the grinding quality of the raw material combination. The lower the CaO content of limestone, the greater the variation in F-CaO for sintering temperature. The lower the class of limestone, the higher B. I. value was calculated, indicating the lower cement clinker sintering. In addition, the mineral analysis results of cement clinker showed that if the F-CaO value was low due to the increase in sintering temperature, the Belite content decreased and the Alite content increased. In the case of Alite, the ratio of R-type decreased and that of M-type increased as the content of limestone CaO increased.

Densification behavior and grain growth of zirconia powder compacts at high temperature (지르코니아 분말 성형체의 고온 치밀화 거동과 결정립 성장)

  • Kim, H.G;Kim, K.T
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1175-1187
    • /
    • 1997
  • Densification behavior and grain growth of zirconia powder compacts are investigated under high temperature. Experimental data are obtained for zirconia powder under pressureless sintering, sinter forging and hot isostatic pressing. The constitutive equations by Kwon et al. are used for diffusional creep and grain growth. The constitutive equations by McMeeking and co-workers are also included to study the effect of power-law creep. These constitutive equations are implemented into a finite element program (ABAQUS) to investigate the friction effect during sinter forging and the canning effect during hot isostatic pressing. The agreements between experimental data and finite element results are very good in pressureless sintering and hot isostatic pressing, but not as good in sinter forging.

Particle Agglomerate Effect on Intermediate/Final Microstructure (입자 응집이 중기/말기 미구조에 미치는 영향)

  • 손영돈;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.843-850
    • /
    • 1992
  • The purpose of this study was to describe the heterogeneity effects on Intermediate/Final microstructure in isothermal liquid phase sintering. Several kinds of pore shapes were made by the different in the heterogeneity stress level during Intermediate/Final stage. Specimen with 48% green density especially showed that the local regions of a sintered compact were subject to more rapid shrinkage than the surroundings. This densification limiting factors generally inhibited sintering and made the large isolated crack-like pore in heterogeneous microstructures.

  • PDF

Preparation of La-modified PbTiO3 Ceramics on Coprecipitation and Salt Decomposition Method (공침법 및 염분해법에 의한 La-modified PbTiO3 요업체의 제조)

  • 이병우;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.62-66
    • /
    • 1990
  • La-modified PbTiO3 Powders and ceramics were prepared by coprecipitation and salt decomposition method. In this process, fine and homogeneous single phase of La-modified PbTiO3 was synthesized at lower temperature than oxide mixing method. And these powders contributed to lowering calcination temperature and rising sintering properties. The properties of these powders and the change of properties with themperature and the effect of powder properties on sintering were investigated.

  • PDF

Effect of Binder on the Sintering Characteristics of PZT Ceramics (Binder가 PZT계 세라믹스의 소결특성에 미치는 영향)

  • 정우환;김정주;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.385-389
    • /
    • 1988
  • Effects of binder addition on the porosity, pore size and grain size of PZT ceramics were investigated. The binders were used PVA, PEG and MC, they were added separately and simultaneously. After sintering for 90 min 125$0^{\circ}C$, the porosity and the pore size were determined by using an image processing method. Simultaneous addition of two different binders resulted in the highest sintered density and the large pore size.

  • PDF

Microstructural Effects on the Thermoelectric Prooperties of PbTe (PbTe계의 열전특성에 대한 미세구조의 영향)

  • 송병덕;김문규
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.481-486
    • /
    • 1990
  • Microstructure of polycrystalline Lead Telluride was controlled by the change of sintering conditions. Three properties which determine the thermoelectric figure of merit of the material were measured in the temperature range of 300-650K in order to investigate the effect of each sintering condition on the thermoelectric efficiency. Based on the observed experimental results, defect structure is concluded to be more important than microstructure though both can be controlled by processing variables.

  • PDF

Influence of Nitrogen/Hydrogen Atmospheres on Sintered Properties of P/M Components

  • Philips, Thomas;Koh, Kyung-Sug
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.818-819
    • /
    • 2006
  • The effect of individual gas constituents in a sintering atmosphere is examined to optimize the sintered properties of Iron-Carbon P/M components. The influence of sintered properties is reviewed as a function of hydrogen percentages and dew point in the sintering zone. Microstructures, porosity, pore morphology and dimensional changes are the subject of this review. The effects of CO containing atmospheres are compared against the non CO atmospheres in terms of hardness, carbon control and dimensional changes.

  • PDF

Fabrication and Properties of Densified Tungsten by Magnetic Pulse Compaction and Spark Plasma Sintering (자기펄스 성형 및 방전 플라즈마 소결 공정으로 제조한 텅스텐 소결체의 특성)

  • Lee, Eui Seon;Byun, Jongmin;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.321-325
    • /
    • 2020
  • The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 ℃ after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 ℃ led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.