DOI QR코드

DOI QR Code

Fabrication and Properties of Densified Tungsten by Magnetic Pulse Compaction and Spark Plasma Sintering

자기펄스 성형 및 방전 플라즈마 소결 공정으로 제조한 텅스텐 소결체의 특성

  • Lee, Eui Seon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이의선 (서울과학기술대학교 신소재공학과) ;
  • 변종민 (서울과학기술대학교 신소재공학과) ;
  • 정영근 (부산대학교 융합학부) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2020.05.29
  • Accepted : 2020.06.12
  • Published : 2020.06.27

Abstract

The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 ℃ after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 ℃ led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.

Keywords

References

  1. J. W. Davis, V. R. Barabash, A. Makhankov. L. Plochl and K. T. Slattery, J. Nucl. Mater., 258-263, 308 (1998). https://doi.org/10.1016/S0022-3115(98)00285-2
  2. E. Lassner and W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Elements, Alloys, and Chemical Compounds, Kluwer Academic/ Plenum Publishers, New York, USA (1999).
  3. I. H. Moon, J. S. Kim and Y. L. Kim, J. Less Common Met., 102, 219 (1984). https://doi.org/10.1016/0022-5088(84)90318-7
  4. Z. Z. Fang and H. Wang, Int. Mater. Rev., 53, 326 (2008). https://doi.org/10.1179/174328008X353538
  5. R. M. Raihanuzzaman, J.-W. Song and S.-J. Hong, J. Alloys Compd., 536, S211 (2012). https://doi.org/10.1016/j.jallcom.2011.12.108
  6. J.-H. Kim, I.-H. Oh, J.-H. Lee, S.-K. Hong and H.-K. Park, J. Korean Powder Metall. Inst., 26, 132 (2019) (in Korean). https://doi.org/10.4150/KPMI.2019.26.2.132
  7. E. A. Olevsky, A. A. Bokov, G. S. Boltachev, N. B. Volkov, S. V. Zayats, A. M. Ilyina, A. A. Nozdrin and S. N. Paranin, Acta Mech., 224, 3177 (2013). https://doi.org/10.1007/s00707-013-0939-6
  8. N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara and M. Tokita, J. Ceram. Soc. Jpn., 103, 740 (1995). https://doi.org/10.2109/jcersj.103.740
  9. R. W. Heckel, Trans. Metall. Soc. AIME, 221, 671 (1961).
  10. T. E. M. Staab, R. Krause-Rehberg, B. Vetter, B. Kieback, G. Lange and P. Klimanek, J. Phys.: Condens. Matter., 11, 1787 (1999). https://doi.org/10.1088/0953-8984/11/7/010
  11. G. Lee, J. McKittrick, E. Ivanov and E. A. Olevsky, Int. J. Refract. Met. Hard Mater., 61, 22 (2016). https://doi.org/10.1016/j.ijrmhm.2016.07.023
  12. J. K. Lee, S. J. Hong, M. K. Lee and C. K. Rhee, Solid State Phenom., 118, 597 (2006). https://doi.org/10.4028/www.scientific.net/SSP.118.597
  13. H.-S. Kim, J.-G. Lee, C.-K. Rhee, J.-M. Koo and S.-J. Hong, J. Korean Powder Metall. Inst., 18, 411 (2008) (in Korean). https://doi.org/10.4150/KPMI.2011.18.5.411
  14. O. El-Atwani, D. V. Quach, M. Efe, P. R. Cantwell, B. Heim, B. Schultz, E. A. Stach, J. R. Groza and J. P. Allain, Mater. Sci. Eng., A, 528, 5670 (2011). https://doi.org/10.1016/j.msea.2011.04.015