• Title/Summary/Keyword: Sintering densification

Search Result 536, Processing Time 0.029 seconds

Low-temperature Sintering and Microwave Dielectric Properties of BaTi4O9-based Ceramics (BaTi4O9계 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Choi, Young-Jin;Shin, Dong-Soon;Park, Jae-Hwan;Nahm, Sahn;Park, Jae-Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.172-177
    • /
    • 2003
  • Effect of glass addition on the low-temperature sintering and microwave dielectric properties of $BaTi_4O_9$-based ceramics were studied to develop the materials for the functional substrate of low-temperature co-fired ceramics. When 10 wt% of glass was added, sufficient densification was obtained and the relative density more than 98% was reached at the sintering temperature of$875{\circ}C$. The microwave dielectric properties were k=32, Q*f=9000 GHz, ${ au}_f$=10 ppm/${\circ}C$. As the amount of glass increased, phase decompositions from $BaTi_4O_9;to;BaTi_5O_{11};and;Ba_4Ti_{13}O_{30}$ was observed.

Characterization of artificial aggregates fabricated from coal bottom ash containing much unburned carbon (미연탄소가 다량 함유된 석탄바닥재로 제조된 인공골재의 물성분석)

  • Kang, Min-A;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • The artificial aggregates (AAs) were manufactured from the parent batch powders consisting of bottom ash containing excess unburned carbon and dredged soil, 7 : 3 weight ratio by direct sintering method and those physical properties were evaluated. Especially, the effects of waste glass or frit (NWG) which was made by addition of 5 wt% $Na_2O$ to the waste glass upon the bloating phenomenon of AAs were analyzed. The AAs manufactured from the parent batch powders showed a lower specific gravity than that of specimens containing waste glass or NWG due to excess u$Na_2O$nburned carbon which usually obstructs a sintering process. But, the waste glass added on parent batch powders promoted the sintering and densification thus increased the specific gravity of AAs. Also the specific gravity of AAs added with 5 wt% NWG, was lowered compared to that of AAs added with as-received waste glass. This is because of bloating of shell which captures gases owing to the lowered viscosity of liquid formed at the specimen surface caused by $Na_2O$ addition. In conclusion, the AAs sintered at above $1100^{\circ}C$ in this study showed characters of lightweight aggregate of specific gravity 1.15~1.34 and water absorption 11~19 %, and the bloating phenomenon of AAs was occurred at the shell rather black core part.

Fabrication and Mechanical Property of Fe-20Cu-1C Compacts by SPS process with Different Heating Rate (방전플라즈마소결법 적용 승온속도 변화에 따라 제조된 Fe-20Cu-1C 소결체 제조 및 특성평가)

  • Ryu, Jung-Han;Shin, Soo-Sik;Ryu, Byung-Rok;Kim, Kyung-Sik;Jang, Jun-Ho;Oh, Ik-Hyun;Kim, Kap-Tae;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.302-307
    • /
    • 2017
  • In this study, Fe-Cu-C alloy is sintered by spark plasma sintering (SPS). The sintering conditions are 60 MPa pressure with heating rates of 30, 60 and $9^{\circ}C/min$ to determine the influence of heating rate on the mechanical and microstructure properties of the sintered alloys. The microstructure and mechanical properties of the sintered Fe-Cu-C alloy is investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The temperature of shrinkage displacement is changed at $450^{\circ}C$ with heating rates 30, 60, and $90^{\circ}C/min$. The temperature of the shrinkage displacement is finished at $650^{\circ}C$ when heating rate $30^{\circ}C/min$, at $700^{\circ}C$ when heating rate $60^{\circ}C/min$ and at $800^{\circ}C$ when heating rate $90^{\circ}C/min$. For the sintered alloy at heating rates of 30, 60, and $90^{\circ}C/min$, the apparent porosity is calculated to be 3.7%, 5.2%, and 7.7%, respectively. The hardness of the sintered alloys is investigated using Rockwell hardness measurements. The objective of this study is to investigate the densification behavior, porosity, and mechanical properties of the sintered Fe-Cu-C alloys depending on the heating rate.

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.878-885
    • /
    • 2012
  • In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.

Synthesis and Densification Behavior of Al Doped (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC) Ceramics for SOFC Interconnects (SOFC 연결재용 Al이 도핑된 (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC)계 세라믹스의 합성 및 치밀화 특성)

  • Lee, Ho-Young;Kang, Bo-Kyung;Lee, Ho-Chang;Heo, Young-Woo;Kim, Jeong-Joo;Kim, Jae-Yuk;Lee, Joon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.392-397
    • /
    • 2012
  • In the $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC), which has been using as interconnector materials in SOFC, Al ions were substituted for Co because ionic radius of Al is similar to that of Co. Because of the almost identical ionic radius of Al and Co, the substitution was not thought to be affect the tolerance factor of LCCC, and the densification behavior, high temperature electrical conductivity and thermal expansion coefficient were examined as a function of Al concentration. In the cases of the x= 0 and x= 0.02 in $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1-x}Al_x)O_3$ (x= 0~0.1), the samples showed the relative densities above ${\geq}95%$ when those were sintered at ${\geq}1,350^{\circ}C$. In the case of the $x{\geq}0.06$ the sintered density deteriorated greatly at lower sintering temperatures. High temperature electrical conductivity of the samples decreased as the content of Al increased. Since the valence state of Al ion is unchangeable, while Cr or Co ions contribute to the electrical conduction by changing those valence states, Al substitution resulted in the decreased electrical conductivity. Al doping of LCCC was an effective way of decreasing the thermal expansion coefficient (TEC).

Microwave Dielectric Properties of (1-x)CaTiO3-xYAIO3 and its Low Temperature Densification by CaB2O4 Addition ((1-x)CaTiO3-xYAIO3계의 마이크로파 유전특성과 CaB2O4첨가제의 영향)

  • 강보경;김경용;김범수;김주선;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • Microwave dielectric properties have been investigated in the$(1-x)CaTiO_3-xYAlO_3$ (x=0.1~1.0) solid solution system. The mixtures of $CaTiO_3$ and $YalO_3$using solid state method were sintered at various temperatures. Their dielectric constants and related temperature coefficients were strongly depend on the composition of the solid solution. The optimum properties were recorded as for ${\varepsilon}_r=47,$ $Q{\times}f_0$=35000 and ${\tau}_f=+11ppm/^{\circ}C$ without sintering agent. Even at $1200^{\circ}C$ full densification has been achieved with addition of $CaB_2O_4$ in the $0.75CaTiO_3-0.25YalO_3$ composition. The sample of $0.3 wt%-CaB_2O_4$ added $ 0.75CaTiO_3-0.25YalO_3$ sintered at $1300^{\circ}C$ for 3 h showed optimum microwave dielectric properties of ${\varepsilon}_r=47$, $Q{\time}f_0=37000$ and ${\tau}_f=+17ppm/^{\circ}C$, which demonstrates the promising candidates for microwave dielectric materials covering 5~7 GHz range.

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers (충전재에 의한 지오폴리머의 고온수축 감소효과)

  • Cho, Young-Hoon;An, Eung-Mo;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying (기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.245-251
    • /
    • 2015
  • We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.

Fabrication and densification of Heusler Fe2VAl alloy powders by mechanical alloying (MA법에 의한 Heusler Fe2VAl 합금분말의 제조 및 치밀화)

  • Kim, Kwang-Duk;Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • We have applied mechanical alloying (MA) to produce Heusler $Fe_2VAl$ thermoelectric alloy using a mixture of elemental $Fe_{50}V_{25}Al_{25}$ powders. An optimal milling and heat treatment conditions to obtain the single phase of Fe2VAl compound with fine microstructure were investigated by X-ray diffraction and differential scanning calorimetry (DSC) measurement. The $Fe_{50}V_{25}Al_{25}$ MA sample ball-milled for 60 hours exhibits a bcc ${\alpha}$-(Fe,V,Al) solid solution. Single phase of Heusler $Fe_2VAl$ compound can be obtained by MA of $Fe_{50}V_{25}Al_{25}$ mixture for 60 hours and subsequently heated up to $700^{\circ}C$. Sintering of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $900{\sim}1000^{\circ}C$ under 60 MPa. The Vickers hardness of bulk sample sintered at $1000^{\circ}C$ was high value of Hv 870. All compact bodies have a high relative density above 90 % with metallic glare on the surface.