• Title/Summary/Keyword: Sintering WC-Co

Search Result 78, Processing Time 0.021 seconds

Consolidation of Binderless and Low-Binder WC hardmetal by Vacuum Sintering (진공 소결공정에 의한 고밀도 바인더리스 및 극저바인더 초경합금의 제조)

  • Min, Byoung-June;Park, Young-Ho;Lee, Gil-Geun;Ha, Gook-Hyeon
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.315-319
    • /
    • 2007
  • Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was $2,800kgf/mm^2$ using binderless WC.

Effect of Grain Growth Inhibitor on Sintering of Nanophase WC-10wt%Co (초미립 WC-l0wt%Co 초경 분말의 소결시 입자 성장 억제제 첨가 효과 연구)

  • 김병기
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.208-216
    • /
    • 1994
  • A radically new approach to the in situ synthesis of the consituent phases of a composite structure has enabled the production of a new WC/Co materials with an ultrafine microstructure. The process for synthesizing nanophase WC/Co powders consists of spray drying from solution to form a homogeneous precursor powder, and thermochemical conversion of the precursor powder to the nanophase WC/Co powder. Near theoretical density of pure nanophase WC-10 wt%Co has been obtained in only 30 sec at 140$0^{\circ}C$. But WC particles were grown up very rapidly with longer sintering time to get full density. To overcome coarsening of WC particle during sintering, VC, TaC and VC/TaC were used as the grain growth inhibitor with different amount respectively. VC/TaC doped WC-10 wt%Co was shown superior hardness and TRS and microstructure was maintained ultrafine scale (average WC size is less than 0.1 ${\mu}{\textrm}{m}$).

  • PDF

Motion of WC Grains in the Liquid Matrix during Liquid Phase Sintering of WC-Co Alloys (WC-Co계의 액상소결시 코발트 액상 내에서 WC 입자의 움직임)

  • 김소나
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.196-200
    • /
    • 1996
  • The dispersion of WC grains Into the interior of an eutectic liquid has been studied by superimposing the eutectic WC-85wt.%Co liquid on the top surface of presintered WC-l0wt.%Co alloy compacts. The heavy WC grains diffused into the interior of liquid from the WC-l0wt.%Co compacts. According to increasing the treating temperatures and times, the dispersion distance from WC-l0wt.%Co substrates increased. The fine WC grains diffused into the liquid faster than the coarse WC grains. The high microstructural stability of WC-Co alloys having the heavier WC grains dispersed in a lighter Co-rich liquid was attributed to Brownian motion of WC grains in liquid. The motion of WC grains in the liquid appears to be same with the colloid(the disperse phase) in a dispersing medium. The dihedral angle of 0 degree of WC-Co at. toy seems one of key parameters, which enables the WC-Co alloys to have high structural stability without settling the WC grains during liquid phase sintering.

  • PDF

Fabrication and Evaluation of WC-3 wt%Co Compacts Fabricated by Spark Plasma Sintering (방전플라즈마소결법을 이용한 WC-3 wt%Co 소결체 제조 및 평가)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.357-361
    • /
    • 2008
  • Microstructure and mechanical properties of WC-3 wt% Co cemented carbides, fabricated by a spark plasma sintering (SPS) process, were investigated in this study. The WC-3 wt%Co powders were sintered at $900{\sim}1100^{\circ}C$ for 5min under 40MPa in high vacuum. The density and hardness were increased as the sintering temperature increased. WC-3 wt%Co compacts with a relative density of 97.1% were successfully fabricated at $1100^{\circ}C$. The fracture toughness and hardness of a compact sintered at $1100^{\circ}C$ were $21.6 MPa{\cdot}m^{1/2}$ and 4279 Hv, respectively.

Solid State Sintering of Micrometric and Nanometric WC-Co Powders

  • Escobar, J.A.;Campo, F.A.;Serrano, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.350-351
    • /
    • 2006
  • A solid stage sinterizacion model of the WC-Co is applied on this work. These results are compaired with the experimental data obtained for nanometric and micrometric sinter powder in an electric furnace and micrometric in a plasma reactor (using Abnormal Glow Discharge AGD). The correlations obtained allow the prediction of the sintering behavior in AGD for nanometric powder. The activation of the solid state sintering is shown with the decraease of the WC size and the use of AGD

  • PDF

Mechanical Properties and Consolidation of Ultra-Fine WC-10Co and WC-10Fe Hard Materials by Rapid Sintering Process (급속 소결 공정에 의한 초미립 WC-10Co와 WC-10Fe 초경재료 제조와 기계적 성질)

  • Jeong, In Kyoon;Park, Jung-Hwan;Doh, Jung-Mann;Kim, Ki-Youl;Woo, Kee-Do;Ko, In-Young;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.223-226
    • /
    • 2008
  • The comparison of sintering behavior and mechanical properties of ultra-fine WC-10wt.%Co and WC-10wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) was accomplished using ultra fine powder of WC and binders(Co, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC-10Co and WC-10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 minute without significant change in grain size. The hardness and fracture toughness of the dense WC-10Co and WC-10Fe composites produced by HFIHS were investigated.

Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가)

  • Kim, Ju-Hun;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

Mechanical Property Evaluation of WC-Co-B4C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-B4C 소재의 기계적 특성평가)

  • Lee, Jeong-Han;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.397-402
    • /
    • 2021
  • In this study, binderless-WC, WC-6 wt%Co, WC-6wt% 1 and 2.5 B4C materials are fabricated by spark plasma sintering process (SPS process). Each fabricated WC material is almost completely dense, with a relative density up to 99.5 % after the simultaneous application of pressure of 60 MPa. The WC added Co and Co-B4C materials resulted in crystalline growth. The WC with HCP crystal structure has respective interfacial energy (basal facet direction: 1.07 ~ 1.34 J·m-2, prismatic direction: 1.43 ~ 3.02 J·m-2) that depends on the grain growth direction. It is confirmed that the continuous grain growth, biased by the basal facet, which has relatively low energy, is promoted at the WC/Co interface. As abnormal grain growth takes place, the grain size increases more than twice from 0.37 to 0.8 um. It is found through analysis that the hardness property also greatly decreases from about 2661.4 to 1721.4 kg/mm2, along with the grain growth.

Selective Laser Sintering of WC-Co Mixture (텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결)

  • 김광희;조셉비만
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture. The experiments were carried out within an air, argon and nitrogen atmosphere. The main problem occurred during sintering within an air atmosphere was oxidation of WC-Co mixture. As the power of laser is increased and scanning speed is decreased, more severe oxidation takes place. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. As the energy density is increased the thickness of the sintered layer is increased.

  • PDF

Fabrication and Mechanical Properties of ultra fine WC-6wt.%Co by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-6wt.%Co 소결체 제조 및 기계적 특성 평가)

  • Park, Hyun-Kuk;Lee, Seung-Min;Youn, Hee-Jun;Bang, Ki-Sang;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Using the spark plasma sintering process (SPS process), the WC-6wt.%Co hard materials were densified using an ultra fine WC-Co powder. The WC-Co was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and the DC pulse current for 3 min without any significant change in the grain size. The average grain size of WC that was produced through this experiment was about $0.2{\sim}0.8{\mu}m$. The hardness and fracture toughness were about $1816kg/mm^2$ and $15.1MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $1200^{\circ}C$.