• Title/Summary/Keyword: Sintering Time

Search Result 679, Processing Time 0.032 seconds

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying (기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.245-251
    • /
    • 2015
  • We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures (미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성)

  • Lee, Shi-Woo;Lee, Seung-Young;Lee, Kee-Sung;Woo, Sang-Kuk;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.994-1000
    • /
    • 2002
  • Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.

A Study of Frangibility of 9MM Bullet Related to Material Composition and Sinter Condition (합금 조성 및 소결 조건에 따른 9MM 탄자의 파쇄성에 관한 연구)

  • Kim, Bo-Ram;Seo, Jung-Hwa;Jung, Hee-Chur;Kim, Kyu-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.615-622
    • /
    • 2020
  • Frangible bullets, which are shredded after impact on a target, reduce the possibility of both ricochet and unexpected injury in shooting training and in mission acts in dams, nuclear power plants, and cultural properties. Reducing the levels of hazardous materials in shooting ranges, such as lead, has become an important agenda for the government and environmental groups. In this study, the shape of a frangible bullet was designed for efficient shredding, and the safety and reliability were confirmed by actual firing under different process conditions. In addition, the physical characteristics, such as compaction pressure, density, and frangibility of each process, were compared by analyzing the microstructure of the sintered frangible bullet. The experiment revealed the smallest fragmentation after impact on the target under the following conditions: Cu-Sn 85:15; sintering temperature, 600℃; sintering time, one hour. Further development of the process conditions and experimental methods will contribute to the performance and environmental improvement of a frangible bullet.

A Making of Aesthetic Dental restorations with Nano Hybrid Ceramic material by CAD/CAM System (치과 CAD/CAM용 Nano Hybrid Ceranic 소재를 이용한 심미 치과보철물의 제작)

  • Choi, Beom-jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.98-108
    • /
    • 2016
  • In recent days, perhaps the biggest driver in new material development is the desire to improve restorations esthetics compared to the traditional metal substructure based ceramics or all-ceramic restorations. Each material type performs differently regarding strength, toughness, effectiveness of machining and the final preparation of the material prior to placement. For example, glass ceramics are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long time sintering procedure which excludes its use for fast chair side production. Hybrid ceramic material developed for CAD/CAM system is contained improved nano ceramic elements. This new material, called a Resin Nano Hybrid Ceramic is unique in durability of function and aesthetic base compositions. The new nano-hybrid ceramic material is not a composite resin. It is also not a pure ceramic. The material is a mixture of both and consists of nano-ceramic fillers. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined by chair side or in a dental lab side, could be an useful restorative option.

Implant-supported prosthetic rehabilitation for the edentulous maxilla using the additive manufacturing technology: A case report (레이저 적층 제조 기술을 이용한 상악 무치악 환자의 임플란트 고정성 보철 수복 증례)

  • Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.173-178
    • /
    • 2018
  • The direct metal laser sintering (DMLS) technique would be promising for the full-arch implant-supported restorations due to reduced cost and manufacturing time without potential human errors and casting defects. The aims of this case report were to describe the successful outcome of an implant-supported fixed dental prosthesis in the edentulous maxilla by using the DMLS technology and computer-aided design and computer-aided manufacturing (CAD/CAM) monolithic zirconia crowns, and to describe its clinical implications. A healthy 51-year-old Korean woman visited Seoul National University Dental Hospital and she was in need of a rehabilitation of her entire maxilla due to severe tooth mobility. In this case, all maxillary teeth were extracted and an implant-supported fixed dental prosthesis was fabricated that involved a cobalt-chromium (Co-Cr) framework with the DMLS technique and CAD/CAM monolithic zirconia crowns. Six months after delivery, no distinct mechanical and biological complications were detected and the prosthesis exhibited satisfactory esthetics and function. In this case report, with the DMLS system, the three-dimensional printed prosthesis was created without additional manual tooling and thus, reliable accuracy and passive fit were obtained.

Fabrication and sintering of nano $TiN_x$ and its composites (Nano $TiN_x$와 그 복합체의 제조 및 소결)

  • Kim, Dong-Sik;Kim, Sung-Jin;Rahno, Khamidova;Park, Sung-Bum;Park, Seung-Sik;Lee, Hye-Jeong;Lee, Sang-Woo;Cho, Kyeong-Sik;Woo, Heung-Sik;Ahn, Joong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • We fabricated the nano $TiN_x$ by making of reaction between titanium powder and $Si_3N_4$ during planetary milling. The $TiN_x$ powder was sintered by spark plasma sintering machine after mixing with 50 wt% of titanium powder, and the sintered body was heat-treated at $850^{\circ}C$ in order to investigate its hardness property at the elevated temperature. We analyzed crystal structure by XRD. We observed the peaks of $TiN_{0.26}$ and TiN after 10 hours milling, and we observed TiN peak mainly after 20 hours milling. The reacted particle size distribution was investigated by FE-SEM. Increase of milling time, the size of reacted particles was decreased and the $10{\sim}20nm$ size of $TiN_x$ on the surface of titanium and $TiN_x$ was observed after 20 hours milling. The micro-Vickers hardness of mixed sintered body was about $1050kgf/mm^2$.

Development of 3D Printing System for Human Bone Model Manufacturing Using Medical Images (의료 영상을 이용한 인체 골 모형 제작의 3차원 프린팅 시스템 개발)

  • Oh, Wang-Kyun
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.433-441
    • /
    • 2017
  • The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals.

Quality Evaluation of the High-purity Limestones for Lime Manufacturing Based on the Measurements of Shape Factor and Grain Boundary Frequency (형상계수 및 경계빈도수 측정에 의거한 생석회 제조용 고품위석회석의 품질 평가)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.371-383
    • /
    • 2009
  • Crystallinity and textural relations, which are crucial in terms of the quality concept of high-purity limestone, have not been effectively applicable to the limestone evaluation as crude ore due to the difficulties in precise measurements. To overcome the above, as a new method of ore characterization, a measurement of shape factor and grain boundary frequency utilizing the image analysing system was adopted in this study. Some domestic limestones used for lime manufacturing were investigated by such a quality evaluation method, and its results are discussed and correlated each other samples. As the result, even though calcite contents of crude ore, i.e., limestone grade and its crystal size are similar, quality of manufactured lime is remarkably different depending on the degree of shape factor and grain boundary frequency. In other words, as the more irregular in crystal shape and the higher the grain boundary frequency, the manufactured quick lime became more superior in all terms of lime quality such as rate of calcination, porosity, reactivity, sintering and decrepitation effect. However, because the quick lime become easily overheated in case of relatively higher degree in shape factor and grain boundary effect, a technology minimizing heating time is necessary for the manufacturing of high quality lime. In limestone industry, such a ore characterization method will be much more reasonable than the conventional method by measurement of mean size, because the method may collectively comprise crystal shape and other textural factors which can not be numerically evaluated in the past.

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications (주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합)

  • Yoon, Jeong-Won;Jeong, So-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.

Preparation and Characterization of Tungsten Carbide Using Products of Hard Metal Sludge Recycling Process (초경합금 슬러지 재활용 공정 산물을 활용한 텅스텐 탄화물 제조 및 특성 평가)

  • Kwon, Hanjung;Shin, Jung-Min
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.19-25
    • /
    • 2022
  • In this study, tungsten carbide (WC) powder was prepared using a novel recycling process for hard metal sludge that does not use ammonium paratungstate. Instead of ammonia, acid was used to remove the sodium and crystallized tungstate, resulting in the formation of tungstic acid (H2WO4). The WC powder was successfully synthesized by the carbothermal reduction of tungstic acid through H2O decomposition, reduction of WO3 to W, and formation of WC. The carbon content and holding time at the carbothermal reduction temperature were optimized to remove free carbon from the WC powder. As a result, most of the free carbon in the WC powder prepared from sludge was removed, and the content of free carbon in the synthesized WC powder was lower than that in commercial WC powder. Moreover, the crystallite size of WC prepared from H2WO4 was much smaller than that of commercial micron-sized WC powder produced from APT. The small crystallite size of WC induces grain growth during the sintering of the WC-Co composite; thus, a WC-Co composite with large WC grains was fabricated using the WC powder prepared from H2WO4. The large WC grains affected the mechanical properties of the WC-Co composite. Further, due to the large grain size, the WC-Co composite fabricated from H2WO4 exhibited a higher toughness than that of the WC-Co composite prepared from commercial WC powder.