• Title/Summary/Keyword: Sintering Behavior

Search Result 711, Processing Time 0.029 seconds

The Fabrication and Their Properties of Zirconia-spinel COmposites by Reaction Sintering (반응소결에 의한 지르코니아-스피넬 복합체의 제조 및 성질)

  • 황규홍;김상모
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.779-784
    • /
    • 1996
  • The spinel/cubic stabilized zirconia composites were fabricated via, The reaction sintering of monoclinic zirco-nia(baddeleyite) added with MgAl powder. During heating Mg and Al were oxidizedfirst and subsequently the oxides formed spinel (MgAl2O4) and finally remained MgO stabilized the zirconia, Because the oxides formed during the oxidation process would have very fine grain size (order of submicron) mainly due to the effects of attrition milling the reaction sintering was more effective in densification and improvement of strength and fracture toughness than conventional sintering with direct addition of MgO. The sintering behavior phase transformation during firing and mechanical properties of sintered body were investigated with emphasis on the relations between spinel formation due to MgAl addition and sintering and mechanical properties.

  • PDF

Solid State Sintering of Micrometric and Nanometric WC-Co Powders

  • Escobar, J.A.;Campo, F.A.;Serrano, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.350-351
    • /
    • 2006
  • A solid stage sinterizacion model of the WC-Co is applied on this work. These results are compaired with the experimental data obtained for nanometric and micrometric sinter powder in an electric furnace and micrometric in a plasma reactor (using Abnormal Glow Discharge AGD). The correlations obtained allow the prediction of the sintering behavior in AGD for nanometric powder. The activation of the solid state sintering is shown with the decraease of the WC size and the use of AGD

  • PDF

Effect of the Sintering Temperature and Atmosphere on the Microstructural Evolution and Shrinkage Behavior of CuO Ceramics (CuO 세라믹스의 소결 온도 및 분위기에 따른 미세구조와 수축거동 변화)

  • Song, Ju-Hyun;Lee, Jung-A;Lee, Joon-Hyung;Heo, Young-Woo;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.528-534
    • /
    • 2012
  • In this study, the densification behavior and microstructural evolution of CuO were examined when this material was sintered at different temperatures in $O_2$, air and Ar atmospheres. The CuO samples maintained their phases even after prolonged sintering at $900-1100^{\circ}C$ in an oxygen atmosphere. When sintering in air, the densification was faster than it was when sintering in oxygen. However, when the samples were sintered at $1100^{\circ}C$, large pores were observed in the sample due to the phase transformation from CuO to $Cu_2O$ which accompanies the generation of oxygen gas. The pore channels in the sample became narrower as the sintering time increased, eventually undergoing a Rayleigh breakup and forming discrete isolated pores. On the other hand, CuO sintering in Ar did not contribute to the densification, as all CuO samples underwent a phase transformation to $Cu_2O$ during the heating process.

Enhanced Sintering Behavior and Electrical Properties of Single Phase BiFeO3 Prepared by Attrition Milling and Conventional Sintering

  • Jeon, Nari;Moon, Kyoung-Seok;Rout, Dibyranjan;Kang, Suk-Joong L.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.485-492
    • /
    • 2012
  • Dense and single phase $BiFeO_3$ (BFO) ceramics were prepared using attrition milled calcined (coarse) powders of an average particle size of ${\approx}3{\mu}m$ by conventional sintering process. A relative density of ${\approx}96%$ with average grain size $7.3{\mu}m$ was obtained when the powder compacts were sintered at $850^{\circ}C$ even for a shorter duration of 10 min. In contrast, densification barely occurred at $800^{\circ}C$ for up to 12 h rather the microstruce showed the growth of abnormal grains. The grain growth behavior at different temperatures is discussed in terms of nonlinear growth rates with respect to the driving force. The sample sintered at $850^{\circ}C$ for 12 h showed enhanced electrical properties with leakage current density of $4{\times}10^{-7}A/cm^2$ at 1 kV/cm, remnant polarization $2P_r$ of $8{\mu}C/cm^2$ at 20 kV/cm, and minimal dissipation factor (tan ${\delta}$) of ~0.025 at $10^6$ Hz. These values are comparable to the previously reported values obtained using unconventional sintering techniques such as spark plasma sintering and rapid liquid phase sintering.

A study of sintering behavior of spray coating in CaO-Al2O3-SiO2 glasses on Al2O3 substrate (CaO-Al2O3-SiO2 계 유리 스프레이 코팅막의 소성 거동에 대한 연구)

  • Na, Hyein;Park, Jewon;Park, Jae-Hyuk;Kim, Dae-Gun;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.298-307
    • /
    • 2019
  • Two types of CaO-Al2O3-SiO2 (CAS) glass powder applied spray coating on the surface of sintered Al2O3 were researched for sintering behavior; (1) Si-rich, glass containing high content SiO2, (2) Ca-rich, containing high content CaO. Foaming of bubbles remaining inside the Ca-rich glass was produced at a viscosity of approximately 107~109 poise, resulting in decreasing shrinkage (interfering with sintering) and increasing surface roughness. In case of Si-rich glass, there was no serious foaming bubbles phenomenon like Ca-rich below 1000℃, however cristobalite crystals with low density occurred at 1200℃ and then produced re-foaming of bubbles, resulting in abnormal sintering behavior. These phenomenon is considered to be a decrease in viscosity due to an increase in the Ca content of the glass according to the formation of low-density cristobalite crystals. Therefore, in case of CAS glass, it is necessary to consider the increase of surface roughness and the sintering interference because of foaming bubbles phenomenon at low temperature sintering. Especially, when containing high SiO2 content, abnormal foaming phenomenon due to crystallization at high temperature should be predicted.

Clamping Voltage Characteristics and Accelerated Aging Behavior of CoCrTb-doped Zn/Pr-based Varistors with Sintering Temperature

  • Nahm, Ghoon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2009
  • The clamping voltage characteristics and accelerated aging behavior of CoCrTb-doped Zn/Pr-based varistors were investigated for different sintering temperatures. The best clamping voltage characteristics were obtained for the varistors sintered at $1330^{\circ}C$, with a clamping voltage ratio (K) of 1.63 at a surge current of 5 A and 1.75 at a surge current of 10 A. The varistors sintered at $1330^{\circ}C$ exhibited the highest stability, with -0.1% in $%{\Delta}E_{1\;mA}$, -0.2% in $%{\Delta}{\alpha}$, and +15.5% in $%{\Delta}J_L$ for E-J characteristics under a stress state of 0.90 $E_{1\;mA/120^{\circ}C$ /24 h. Furthermore, it exhibited $%{\Delta}{\varepsilon}_{APP}$' of -0.7% and $%{\Delta}tan{\delta}$ of +5.7% for dielectric characteristics under the same stress state.

Preparation and Sintering Behavior of Alumina Powders Synthesized from Aluminum Alkoxide (알콕사이드로부터 알루미나 미분말의 합성과 그 소결특성)

  • 김창은;이종혁;이해욱
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.568-576
    • /
    • 1991
  • The powder characterization and sintering behavior of alkoxide-derived alumina powders prepared by esterification were investigated. The dried powders were calcined at 700$^{\circ}C$, 900$^{\circ}C$, 1080$^{\circ}C$, 1170$^{\circ}C$ for 1 h. and the resulting crystalline forms were amorphous, {{{{ gamma }} phase, {{{{ theta }}+{{{{ alpha }} phase, and {{{{ alpha }} phase, respectively. The sinterability was best in the case of being calcined at 1170$^{\circ}C$. It was most effective to disperse sintering additive in the initial stage from which acetate was formed. At 1600$^{\circ}C$ for 4 h, 98.5% of relative density was obtained when MgO and Fe2O3 were simultaneously doped, and dense sintered body whose density was near theoretical value was obtained when heating schedule was controlled.

  • PDF

Effect of $Al_{2}O_{3}$ filler addition on sintering behavior of low-firing $BaO-B_{2}O_{3}-ZnO$ glass ceramic system

  • Kim, Young-Nam;Kim, Byung-Sook;Lee, Joon-Hyung;Kim, Jeong-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.814-817
    • /
    • 2003
  • The sintering behavior of $BaO-B_{2}O_{3}-ZnO$, which is Pb-free glass-ceramic system, was examined as functions of the composition and the amount and particle size of $Al_{2}O_{3}$ filler. Different kinds of modifiers were added and $Al_{2}O_{3}$ fillers with different particle sizes ($1.5{\mu}m$ and $4.5{\mu}m$) were added. The glass frit-filler composites were sintered in the temperature range $520{\sim}580^{\circ}C$. X-ray diffraction results revealed that some of the composites crystallized during sintering. Dielectric constant and thermal expansion coefficient the glass-ceramics were analyzed.

  • PDF

Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature (나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석)

  • Kim, Hong-Gee;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

Microstructure and Mechanical Properties of Nanostructured Aluminum Consolidated by SPS

  • Zadra, Mario;Casari, Francesco;Molinari, Alberto
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.360-361
    • /
    • 2006
  • Nanostructured aluminum powders were obtained by means of planetary ball milling with methanol as the Process Control Agent (PCA). The behavior, during milling, was considered measuring the microhardness and grain size at different milling times. Bulk near-full density samples were sintered using the Spark Plasma Sintering technology with different schedules: temperature of $500^{\circ}C$ and $550^{\circ}C$, pressure of 30 MPa and 60 MPa and different modes of applying the pressure were changed in order to understand the behavior during sintering. All the samples retained their nanostructure with an increase of the grain size from about 46 up to 70-90 nm.

  • PDF