DOI QR코드

DOI QR Code

Clamping Voltage Characteristics and Accelerated Aging Behavior of CoCrTb-doped Zn/Pr-based Varistors with Sintering Temperature

  • Nahm, Ghoon-Woo (Semiconductor Ceramics Lab., Department of Electrical Engineering, Dongeui University)
  • 발행 : 2009.08.31

초록

The clamping voltage characteristics and accelerated aging behavior of CoCrTb-doped Zn/Pr-based varistors were investigated for different sintering temperatures. The best clamping voltage characteristics were obtained for the varistors sintered at $1330^{\circ}C$, with a clamping voltage ratio (K) of 1.63 at a surge current of 5 A and 1.75 at a surge current of 10 A. The varistors sintered at $1330^{\circ}C$ exhibited the highest stability, with -0.1% in $%{\Delta}E_{1\;mA}$, -0.2% in $%{\Delta}{\alpha}$, and +15.5% in $%{\Delta}J_L$ for E-J characteristics under a stress state of 0.90 $E_{1\;mA/120^{\circ}C$ /24 h. Furthermore, it exhibited $%{\Delta}{\varepsilon}_{APP}$' of -0.7% and $%{\Delta}tan{\delta}$ of +5.7% for dielectric characteristics under the same stress state.

키워드

참고문헌

  1. L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull. 65, 639 (1986).
  2. T. K. Gupta, J. Amer. Ceram. Soc. 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. Y. S. Lee and T. Y. Tseng, J. Amer. Ceram. Soc. 75, 1636 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04236.x
  4. J. Wong, J. Appl. Phys. 46, 1653 (1975). https://doi.org/10.1063/1.321768
  5. A. B. Alles and V. L. Burdick, J. Appl. Phys. 70, 6883 (1991). https://doi.org/10.1063/1.349812
  6. A. B. Alles, R. Puskas, G. Callahan, and V. L. Burdick, J. Am. Ceram. Soc. 76, 2098 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  7. Y.- S. Lee, K.-S. Liao, and T.- Y. Tseng, J. Amer. Ceram. Soc. 79, 2379 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08986.x
  8. C.-W. Nahm, Mater. Lett. 47, 182 (2001). https://doi.org/10.1016/S0167-577X(00)00262-7
  9. C.-W. Nahm and J.-S. Ryu, Mater. Lett. 53, 110 (2002). https://doi.org/10.1016/S0167-577X(01)00464-5
  10. C.-W. Nahm, Solid State Commun. 126, 281 (2003) https://doi.org/10.1016/S0038-1098(03)00062-0
  11. C.-W. Nahm, Mater. Lett. 57, 1317 (2003). https://doi.org/10.1016/S0167-577X(02)00979-5
  12. C.-W. Nahm and B.-C. Shin, Mater. Lett. 57, 1322 (2003). https://doi.org/10.1016/S0167-577X(02)00980-1
  13. C.-W. Nahm, Mater. Lett. 58, 2252 (2004). https://doi.org/10.1016/S0167-577X(04)00104-1
  14. C.-W. Nahm and B.-C. Shin, J. Mater. Sci.: Mater. Electron. 16, 725 (2005). https://doi.org/10.1007/s10854-005-4975-4
  15. C.-W. Nahm, Mater. Lett. 60, 3394 (2006). https://doi.org/10.1016/j.matlet.2006.06.015
  16. C.-W. Nahm, Trans. Electr. Electron. Mater. 8, 105 (2007). https://doi.org/10.4313/TEEM.2007.8.3.105
  17. C.-W. Nahm, Mater. Lett. 62, 2900 (2008). https://doi.org/10.1016/j.matlet.2008.01.068
  18. C.-W. Nahm, Trans. Electr. Electron. Mater. 10, 80 (2009). https://doi.org/10.4313/TEEM.2009.10.3.080
  19. J. C. Wurst and J. A. Nelson, J. Amer. Ceram. Soc. 55, 109 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  20. J. Fan and R. Freer, J. Am. Ceram. Soc. 77, 2663 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04659.x
  21. T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1985). https://doi.org/10.1007/BF01113755
  22. K. Eda, A. Iga, and M. Matsuoka, J. Appl. Phys. 51, 2678 (1980). https://doi.org/10.1063/1.327927
  23. International Electrothechnical Committee, "IEC 61000-4-series, Electromagnetic Compatibility", IEC publisher, 1992