• Title/Summary/Keyword: Singular Decomposition

Search Result 399, Processing Time 0.029 seconds

Fractionally Spaced Blind Equalization Using Singular Value Decomposition (특이값 분해를 이용한 블라인드 부분 간격 등화기)

  • Kim, Geumbee;Lee, Jeongwon;Nam, Haewoon;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1041-1043
    • /
    • 2016
  • This letter proposes a new blind fractionally spaced equalization (FSE). The conventional linear program (LP) FSE reduces the degree of freedom (DOF) by abandoning many equalization filter taps, which causes severe performance degradations. We use singular value decomposition (SVD) to obtain the signal subspace and to fully utilize all samples for performance improvement. The proposed scheme has similar performance with the nuclear norm minimization and has as low complexity as the LP equalizer.

MICROLOCAL ANALYSIS IN THE DENJOY-CARIEMAN CLASS

  • Kim, June-Gi;Chung, Soon-Yeong;Kim, Do-Han
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.561-575
    • /
    • 2001
  • Making use of the singular spectrum in the Denjoy-Carleman class we prove the microlocal decomposition theorem and quasianalytic versions of Holmgren's uniqueness theorem and watermelon theorem.

  • PDF

Guaranteed cost control for singular systems with time delays using LMI

  • Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.44.1-44
    • /
    • 2002
  • This paper is concerned with the problem of designing a guaranteed cost state feedback controller for singular systems with time-varying delays. The sufficient condition for the existence of a guaranteed cost controller, the controller design method, and the optimization problem to get the upper bound of guaranteed cost function are proposed by LMI(linear matrix inequality), singular value decomposition, Schur complements, and change of variables. Since the obtained sufficient conditions can be changed to LMI form, all solutions including controller gain and upper bound of guaranteed cost function can be obtained simultaneously.

  • PDF

Applications of Block Pulse Response Circulant Matrix and its Singular Value Decomposition to MIMO Control and Identification

  • Lee, Kwang-Soon;Won, Wan-Gyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.508-514
    • /
    • 2007
  • Properties and potential applications of the block pulse response circulant matrix (PRCM) and its singular value decomposition (SVD) are investigated in relation to MIMO control and identification. The SVD of the PRCM is found to provide complete directional as well as frequency decomposition of a MIMO system in a real matrix form. Three examples were considered: design of MIMO FIR controller, design of robust reduced-order model predictive controller, and input design for MIMO identification. The examples manifested the effectiveness and usefulness of the PRCM in the design of MIMO control and identification. irculant matrix, SVD, MIMO control, identification.

A New Support Vector Compression Method Based on Singular Value Decomposition

  • Yoon, Sang-Hun;Lyuh, Chun-Gi;Chun, Ik-Jae;Suk, Jung-Hee;Roh, Tae-Moon
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.652-655
    • /
    • 2011
  • In this letter, we propose a new compression method for a high dimensional support vector machine (SVM). We used singular value decomposition (SVD) to compress the norm part of a radial basis function SVM. By deleting the least significant vectors that are extracted from the decomposition, we can compress each vector with minimized energy loss. We select the compressed vector dimension according to the predefined threshold which can limit the energy loss to design criteria. We verified the proposed vector compressed SVM (VCSVM) for conventional datasets. Experimental results show that VCSVM can reduce computational complexity and memory by more than 40% without reduction in accuracy when classifying a 20,958 dimension dataset.

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

A Study on the Application of SVD to an Inverse Problem in a Cantilever Beam with a Non-minimum Phase (비최소 위상을 갖는 외팔보에서 SVD를 이용한 역변환 문제에 관한 연구)

  • 이상권;노경래;박진호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.431-438
    • /
    • 2001
  • This paper present experimental results of source identification for non-minimum phase system. Generally, a causal linear system may be described by matrix form. The inverse problem is considered as a matrix inversion. Direct inverse method can\`t be applied for a non-minimum phase system, the reason is that the system has ill-conditioning. Therefore, in this study to execute an effective inversion, SVD inverse technique is introduced. In a Non-minimum phase system, its system matrix may be singular or near-singular and has one more very small singular values. These very small singular values have information about a phase of the system and ill-conditioning. Using this property we could solve the ill-conditioned problem of the system and then verified it for the practical system(cantilever beam). The experimental results show that SVD inverse technique works well for non-minimum phase system.

  • PDF

Design of 2-D Separable Denominator Digital Filters based on the reduced Dimension Decomposition of Frequency Domain Specification (주파수영역 설계명세조건의 저차원분해를 이용한 2차원 디지털 필터의 설계)

  • 문용선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1346-1353
    • /
    • 2001
  • This paper presents an algorithm for the design of 2 dimension separable denominator digital filter(SDDF). The proposed algorithm is based on the reduced dimensional decomposition not only 2 dimension SDDF's but also of given 2 dimension specification. The frequency domain design of 2 dimension separable denominator digital filters based on the reduced dimensional decomposition can be realized when the given 2 dimension frequency specification are optimally decomposed into a pair of 1 dimension digital filter specification via singular value decomposition. the algorithm is computationally efficient and numerically stable. In case of the low pass filter, the approximation error of the proposed design algorithm is $e_{m}$=5.17, $e_{r1}$ =8.78, $e_{r2}$=7.34, while in case of band pass filter, the approximation error is $e_{m}$=13.00, $e_{r1}$=62.76, $e_{r2}$=62.7676.7676

  • PDF

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

Development of reliable $H_\infty$ controller design algorithm for singular systems with failures (고장 특이시스템의 신뢰 $H_\infty$ 제어기 설계 알고리듬 개발)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.29-37
    • /
    • 2004
  • This paper provides a reliable H$_{\infty}$ state feedback controller design method for delayed singular systems with actuator failures occurred within the prescribed subset. The sufficient condition for the existence of a reliable H$_{\infty}$ controller and the controller design method are presented by linear matrix inequality(LMI), singular value decomposition, Schur complements, and changes of variables. The proposed controller guarantees not only asymptotic stability but also H$_{\infty}$ norm bound in spite of existence of actuator failures. Since the obtained sufficient condition can be expressed as an LMI fen all variables can be calculated simultaneously. Moreover, the controller design method can be extended to the problem of robust reliable H$_{\infty}$ controller design method for singular systems with parameter uncertainties, time-varying delay, and actuator failures. A numerical example is given to illustrate the validity of the result.