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Applications of Block Pulse Response Circulant Matrix and its Singular
Value Decomposition to MIMO Control and Identification

Kwang Soon Lee and Wangyun Won

Abstract: Properties and potential applications of the block pulse response circulant matrix
(PRCM) and its singular value decomposition (SVD) are investigated in relation to MIMO
control and identification. The SVD of the PRCM is found to provide complete directional as
well as frequency decomposition of a MIMO system in a real matrix form. Three examples were
considered: design of MIMO FIR controller, design of robust reduced-order model predictive
controller, and input design for MIMO identification. The examples manifested the effectiveness
and usefulness of the PRCM in the design of MIMO control and identification. irculant matrix,

SVD, MIMO control, identification.
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1. INTRODUCTION

In recent years, the state space model-based
approaches have dominated the controller design
techniques. The transfer function-based methods are
still important, however, in that the transfer function
represents the complete frequency characteristics of a
linear system, enabling us to view and analyze the
system from a different angle. Despite its advantage,
usefulness of the frequency domain approach is
confined to SISO problems in many cases and is not
easily extended to MIMO problems. It is primarily
because a MIMOQ transfer function is represented by a
matrix of complex functions and the techniques to
analyze and interpret complex matrices are not as
convenient as those for real matrices. Additionally, the
transfer function itself does not provide the directional
information although both the frequency and
directional characteristics are inherent in MIMO
systems.

As an alternative representation of the MIMO
transfer function that can overcome the problems
mentioned above, the block pulse response circulant
matrix (PRCM) [1,2] and its properties are introduced
and investigated. The PRCM is a matrix that maps an
input sequence to an output sequence, both of which
are periodic over an interval. It is composed of the
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finite impulse response (FIR) coefficients and has
one-to-one correspondence to an FIR model. The
PRCM has been used in the filter design in signal
processing [3,4]. The related concepts have also been
introduced to controller design [5,6]. The applications
have been restricted to SISO problems and MIMO
extensions have not yet been made as far as the
authors have surveyed. This paper shows that the
singular value decomposition (SVD) of the block
PRCM gives the directional and frequency
decomposition of a MIMO system in a real matrix
form, and this property can be utilized in control and
identification of MIMO systems. As potential
applications of block PRCM and its SVD, three
design problems are considered: MIMO feedback
control, reduced-order robust model predictive control
(MPC), and input excitation signal for MIMO
identification. Effectiveness of the PRCM is
demonstrated through numerical examples for the
respective applications.

In the subsequent sections, R,C, and the superscript
" will be used to represent the spaces of real and
complex numbers and the conjugate transpose of a
complex matrix, respectively.

2. PULSE RESPONSE CIRCULANT MATRIX

2.1. Definition and basic properties

Consider an n,-input/n,-output asymptotically
stable MIMO discrete-time system described by an
impulse response model

w7y =A™, (1)
where
A=z ™, b e RY™, )
k=0
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Let the SVD of H(e™/®) be
H(e™®) =W (0)D(@)p (o) 3)

with W(w)e ™™ P(w)e C™™ D) R™ ™.
The singular value matrix ls(w) has nonnegative
real elements in the principal diagonal, which are the
directional gains of the system at frequency ®. The
input and output singular matrices, I}(a)) and

Vf/(m), are unitary. The above SVD provides the
directional decomposition of a frequency response
model, but the analytic SVD of H (e'j ®) is hard to
obtain. What we can do best is the numerical
decomposition at each ®.

For asymptotically stable H, (2) can be approxi-

mated by the following finite impulse response (FIR)
model for some N:

N-1
H(z_l) = z hkz_k . (4)
k=0

Associated with (4), we consider the following block
PRCM H that represents the map between a
sequence of N -periodic input and a sequence of N -
periodic output:

Y = HU, )
where
Y[y’ -y N1
I [u(k)T u(k + N -1)7 }T, (6)
hO hN—l NN hl
me| o Bl e

hN—l hN—Z hﬂ

In the followings, MIMO block PRCM will be simply
called PRCM wherever there is no confusion.

Consider the discrete Fourier transform (DFT)
matrix:

& b - a

Fé# @ dl T ey )
dyy dyy - dyd

where dy2e/%1,; o, 22%; [ denotes the

mxm identity matrix. The DFT matrix is symmetric

and unitary, i.e., FT=F and F*F=FF*=I.

Then the following holds for the PRCM:
Lemma 1: For a SISO PRCM, the eigenvalues and

the normalized eigenvectors are H (e_jmk) and the

vectors of F* for =01, N -1,
respectively. For a block PRCM, the same holds
block-wise.
The lemma is well known for the SISO case [1,2].
Proof for the MIMO case is given in the appendix.
According to the lemma, H can be block-
diagonalized by the similarity transform with F
such that

Y = HU, (8)

where

column

Y2FY,U2FU,H 2 FHF" =bd[H(e_j‘°" )], )

and ‘bd’ denotes the block-diagonal matrix. It can be
seen that H corresponds to the FIR model H at the
frequencies ®;, £=0,--,N-1.
The following is essential in the analysis and
synthesis of a MIMO controller using the PRCM:
Lemma 2: Any series, parallel, and/or feedback
interconnection of PRCM’s is a PRCM. Conversely, if
a series, parallel, and/or feedback interconnection of
some matrix 4 and PRCM’s is a PRCM, 4 is also
a PRCM.
Proof is given in the appendix.

2.2. SVD of PRCM
Let the SVD of PRCM H be represented as

H=wWDV’, (10)
where We YN , VeRWMulN — and De
RPN denote orthogonal output and input singular

matrices, and the singular value matrix, respectively.
SISO Case: Let n, =n, =1. To investigate the

properties of the matrices in (10), we take the DFT on
both sides of (10).

H = (FW)D(FV)" (11)

Both FW and FV are unitary and D is real and
diagonal, and (17) represents the SVD of H. From
the fact that H is diagonal with complex elements,

D = diag [| H(e /@) |], i.e., the diagonal elements of

D are the amplitude ratios of the FIR model at each
o, rearranged in order of descending magnitude
according to the definition of the SVD. More details
on the SVD are summarized in the following lemma:
Lemma 3: Consider the SVD of a SISO PRCM in
(10). It is assumed that the SVD is rearranged in order
of increasing w; for notational simplicity. Let w,
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and v, be the column vectors of W and V,

respectively, corresponding to | H (e“j ®k)|. Then

D=diag[| H(e_j“’k)|], k=0,1,--N-1,

cos(wy ‘0+¢1,k)
w, =, |— : ,
cos(@, (N -1+ ¢ ;)
sin(wy, '0+¢1,k)
WN_k =47 > (12)
sin(w, (N =)+ ¢, ;)
cos(wy -O+¢2’k)

Vi =.— : ,
cos(@ (N -1+, )
sin(wy, ‘0+¢2,k)

YNk T 57 : )
sin(w (N =1} + 65 )

where ¢, =argH (e /%) = ¢ x — Py represents the
phase angle. The SVD is not unique since ¢ ; and
¢, can be arbitrary within ¢ = ¢, — 6.

Proof is given in the appendix. The above tells that the
SVD of a SISO PRCM provides the complete
information on the amplitude ratio and phase angle in
a real matrix form.

MIMO Case: The result of the SISO case can be
extended to the MIMO case with additional

complexity. H (e_jm") for a MIMO system is an

n, %n, complex matrix and H isa block-diagonal

matrix. Let the SVD of H(e /®¢) be
H(e 7y =W (o)D(w; WV (o), (13)

where W(w;)eC™ ™,V (o) € C™™, and D(wy;)

eR™ ™ _ The above represents the directional
decomposition of H(e™/®). From (9), (10), and

(13), we have

H=WDV’ = F*HF

= Fbd[W (0 )]bd[D(w;)]bd[V ()" IF . (14)
I =D VT

In the above, mbD consists of the directionally
decomposed frequency gains. Expansion of (14) and
rearrangement leads to the following lemma:

Lemma 4: Consider the SVD of a MIMO PRCM
as in (10). The SVD is assumed to be rearranged in

order of increasing ®;. Let w; and v, be the
block column vectors of W and V, respectively, and
d; be the corresponding Kt diagonal block of D.
Then using the SVD in (13), we have

D = bd[ D(wy )] Wy vy +W iy Vi
, |
=—Re : X
ejmk(N_l)W(u)k)
D((Dk)[e_jmk.oV((Dk)* . .e—fﬁ)k(N—l) V((Dk)* }

(15)
Proof is given in the appendix. In both the SISO and
MIMO cases, column vectors of the input and output
singular matrices are sampled sinusoids of different
frequencies. Therefore, the frequency associated with
each singular value can be identified by inspection.

3. APPLICATIONS

3.1. Design of FIR controller
Consider a MIMO discrete-time stable process

¥(2) = G(2)u(2). (16)
We want to design a feedback regulator
u(z) = K(2)(r(z) - ¥(2)), a7

such that the closed-loop transfer function is G, (2),

ie.,

W(z2) = (I + G(2)K(2)) ' G(2)K(2)r(2)
=G, (2)r(z).

It is assumed that G_(z) is given so that K(z) is

(18)

asymptotically stable.

Let G and G, be the PRCM represeniations of
G(z) and G, (z), respectively, and K be the matrix
representation of yet undetermined K(z). The
problem in (18) can be converted to

(I+GK)'GK =G. (19)

Under the assumption that I-G_; is invertible, K is
obtained as

K=G'G,(I-G,)", (20)

where * denotes a pseudo-inverse. From Lemma 2,
K is a PRCM, and FIR controller can be constructed
with the first column block of K.

3.2. Design of robust MPC
When a system is identified experimentally, the
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high gain modes are easily excited and precisely
identified whereas the low gain modes are not.
Consequently, large error is usually incurred in the
estimates of the low gain modes, and a model-based
controller may result in poor performance or
instability of the closed loop. One way to avoid this
problem is to block the signals associated with the low
gain modes. For this, it is necessary to know the
directions and frequency range over which the process
gains are significantly small.

We apply the above idea to the design of robust
MPC. Let AU(r) denote the future input moves

determined at z. In the standard MPC method, the
dimension of AU(f) is high and the required
computation is heavy [7,8]. We address the problem
of computation reduction together with robustness
enhancement against model uncertainty, and the
following input blocking is proposed on the basis of
the SVD of the PRCM.

Let H be the PRCM of the process model.
Assume that the SVD of H is given as

H=[W, WZ]{DI 0 }[vl v,]".D;>D,. 1)

0 D,

In the above, the partition associated with D, may

include large model error. If the control input is
restricted to the span of V;, the low gain part will
not be excited and the potential instability of the

closed-loop can be avoided. The input movement is
defined as

AU(2) = Vye(?). (22)

MPC determines c¢(¢#), whose dimension is smaller
than that of AU(?).
Example 1: The process and the nominal model are

zero-order hold equivalents of the following transfer
function matrices with sampling interval of 2:

1.7 23
2
G (5) = (10s +1)(10s + 5 +1) 30s +1 |
1.3 2.8
205 +1 (10s +1)(5s> + 5 +1)
1.5 22
Gnom(s)z 10s+1 30s+1 )
1.2 2.6
20s+1 10s+1

(23)
Both the prediction and control horizons were chosen
to be 90, and both input and output weighting
matrices were given as I. From Fig. 1, it can be seen
that significant error exists in the nominal model
beyond ® =0.1rad/sec. Because of this, regular MPC

Magnitude (dB)

Magnitude (dB)

10 10° 10° 10!
Frequency (rad/sec)

Fig. 1. Magnitude ratios of diagonal elements of
process and nominal model transfer function

matrices.

£

150 200

100 150 200 250
Time

(b) Reduced-order MPC.

Fig. 2. Responses of regular and reduced-order MPC
(solid line: y;, dashed line: y, ).

renders the closed-loop unstable as shown in Fig. 2(a).
To improve the robustness, the SVD was conducted
on the 180x180 PRCM formed with ninety 2x2
pulse response coefficient matrices of the nominal
model, and the first 12 column vectors of V was
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selected as 'V}, which roughly covers the frequency

up to 0.2 rad/sec. The performance of the robust
reduced-order MPC by input blocking is shown in Fig.
2(b). It can be seen that the low gain modes are
effectively suppressed and the instability is removed
leading to smoothly converging responses to the set
point changes.

3.3. Input design for MIMO identification

The input design to excite all latent system modes
with prescribed S/N ratios has been a constant
research subject in system identification [9,10]. We
propose a novel approach to this, where the SVD of
the PRCM is repeatedly applied to the estimated
model.

Consider the following system with a PRCM
representation:

Y=HU+E=WDV/U+E, (24)

where E is assumed to be a zero-mean output noise
with uniform variance over all modes.

In order to estimate all the principal gains with
uniform accuracy, it is necessary to design the input so
that the S/N ratio of the output for each principal
direction is uniformly large. This can be achieved by
the following input signal:

n, N
U=Zu;—k>>WTE (25)
k=1 k

for some large a >0 where di’s and v, ’s denote the

singular values and the input singular vectors,
respectively. In reality, accurate H is not available in
advance, hence U may not be designed as intended.
Instead, we can take the following iterative steps for
sequential improvement of the input signal:

Step 1: Apply a uniformly distributed random
signal to all inputs and identify the system. Let n=1.

Step 2: Let the PRCM of the estimated model be
H, Takethe SVDof f,.

Step 3: Construct the input signal as in (25) using
the SVD of 1y, for the next identification

experiment.

Step 4: Repeat steps 2 and 3 with increasing n
until the estimates of d;’s converge.

In the first run, only the high gain modes will be
identified accurately. The input directions for the low
gains will be estimated inaccurately as a result, but the
span of the directions will be correct because it is
given to be orthogonal to the high gain input
directions. The low gain modes can be appropriately
excited and be identified in the next run. Repeated
application of (25) with v; and dj, which are replaced
by the estimates from the previous run, will

progressively achieve balanced excitation of all modes.

45
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Fig. 3. Singular values of PRCM’s.

o can be given differently with & if it is desired to
concentrate the input energy over a certain frequency
range and/or input directions. Koung and MacGregor
[11] have proposed a similar idea to the above, but the
method was limited to the identification of the steady
state gain.

Example 2: The process to identify is the zero-

order hold equivalent of GP“(s) in (23) with

sampling period of 2. It is assumed that independent
zero-mean Gaussian noises with variance of 0.5 are
imposed on each output. In the first experiment,
independent PRBS’s with amplitude 1.5 was applied
to each input for 1,500 sampling times and a model
was identified using a subspace technique called
N4SID [12]. In the subsequent experiments, the
proposed method was applied with o=2 using
PRCM’s with N =150.

In Fig. 3, the singular values of the PRCMs for the
true process and the estimated model are compared.
One can see the singular value estimates converge to
the true values in just two runs.

4. CONCLUSIONS

It has been shown that the block PRCM is a useful
alternative representation of a MIMO dynamic system
and that its SVD can play as a powerful instrument in
the design of MIMO control and identification. The
PRCM’s can replace the asymptotically stable transfer
function matrices with one-to-one correspondence.
This property enables us to construct a MIMO FIR
controller through a simple matrix algebra. It was also
proved that the SVD of a PRCM provides the
complete directional and frequency decomposition of
the PRCM in a real matrix form. Methods to design a
robust controller and input signals for MIMO
identification were considered as exemplary appli-
cations of this property.
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APPENDIX A
In the subsequent proofs, the ordinal numbers are
counted from zero.

Proof of Lemma 1: Let f; be the k™ column
block of F.

1

szﬁ

What we have to show is that

HF7,=f H( "),

[1 eIk e ok ‘W]T (A1)
(A.2)

where denotes the complex conjugate. Since
Tk = IO NTM) - the  p™ block of HF, is

obtained as
THT =— (b 4. he/®P
e Hf = AN hge
+hy el ,hp+leﬂ0k(N~1) )
_ jogp ) o
=e —ﬁ(ho + hle ee
hy 4o SORND)

we A"

= g JOkP H(e-jwk ),

(A.3)

where ef, denotes a matrix that picks the pth

block. The above tells that 7k is the k™ block
eigenvector of H and the corresponding block
eigenvalue is H(e /°%). O
Proof of Lemma 2: We prove the lemma using an
exemplary matrix equation Q=(I+ HK)_1 HK.
First, let H and K be PRCM’s. DFT of the matrix
equation yields
FQF* = F(1+ HK) 'HKF"
= (L+ FHF"FKF")" FHF" FKF"
=+ HK) 'HK.

(A4)

Since H and K are block-diagonal, Q= FQF"

is also block-diagonal, which implies that Q is a
PRCM. Conversely, if Q and H are PRCM’s,

DFT shows that FKF™ is block-diagonal, which
means K isaPRCM. U

Proof of Lemmas 3 and 4: Let f, be the k™
column block of F. It holds that f, = fy_; and

H(e_jmk):H(eij-k) for k=0,---N—1. Without

loss of generality, N is assumed to be an odd
number. From (9)-(11) and (13), we have

N-1

H=WDV' =F*HF = 7 H( /) f]
k=0
(N-D/2 ,
~HO+ Y, (FHE A
k=1
+ F @ )f§_k)
(N-h2, , N
—HO+ 3. ( FHE T fT + fH ™) fk)
k=1

(N-D/2 _
—HO+2 Y Re(ka(e‘f‘“k)fkT)
k=1

(N-1)/2

—HW)+2 Y, Re(ka(mk)D(mk)V(mk)* fij.

k=1
(A.5)
For the SISO case, H (e_j‘”k)=rkej¢" and D(w;)

P e can be split between W(w;) and

V(o) with any ratio. Let
W () =™ 1 (@) =€/

with ¢ =@ — ¢, ;. Then

(A.6)

Re 7 W (@) D(p W (o) £
— iRe [CO] I:ej(mk”r +¢l,k) j| row |:e_f(“)k”c +¢2,k) :|J
N

= %[cos((cokn, +d ) — (o, + By ))]
= %[cos(mknr + ¢],k Ycos(on, + ¢2,k)
+sin(@gn, + @ ;) sin(@gn, + ¢2,k)J

cos(w;, -0+ ¢l,k)
=l : X

v :
cos(w, (N -1+ ¢l,k)
[cos((nk 0+6 1)

sin(my '0+¢l,k)

cos(m, (N -1+ ¢2,k)]

+ X

2|

sin(oy (N ~1)+ ¢ ;)

[sin(ey -0+5) sin(w, (N =D +d4) ],

(A7)

where n,,n,=0,1,---,N~1 and [] represents a

matrix. If we define
w = |:w0 ...WN_I:I,V = |:v0 ...VN_I:I’D = diag[dk]
(A.8)
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then we have

N-1

H= Z dkwkvlf.
k=0

(A.9)

Comparing (A.9) with (A.5) after inserting (A.7) gives
(12). For the MIMO case, we rearrange (A.5) using
the following expression
Re 7 ¥ (0, )D(w0 )V ()" i
. W (@)
=—Re D(Q)k) X
e/ Pk (N_I)W((Dk )

l:e—j“’k 'OV((Dk )* e Ok (N_I)V((Dk )* }

(A.10)

and the fact that the k™ and the N—k™ column
blocks of W and V are associated with £ (@)

and f V() respectively. This results in (15) and

proves Lemma 4. O
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