• 제목/요약/키워드: Singleton bound

검색결과 5건 처리시간 0.019초

HIGHER WEIGHTS AND GENERALIZED MDS CODES

  • Dougherty, Steven T.;Han, Sung-Hyu
    • 대한수학회지
    • /
    • 제47권6호
    • /
    • pp.1167-1182
    • /
    • 2010
  • We study codes meeting a generalized version of the Singleton bound for higher weights. We show that some of the higher weight enumerators of these codes are uniquely determined. We give the higher weight enumerators for MDS codes, the Simplex codes, the Hamming codes, the first order Reed-Muller codes and their dual codes. For the putative [72, 36, 16] code we find the i-th higher weight enumerators for i = 12 to 36. Additionally, we give a version of the generalized Singleton bound for non-linear codes.

ON SOME MDS-CODES OVER ARBITRARY ALPHABET

  • Chang, Gyu Whan;Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • 제9권2호
    • /
    • pp.129-131
    • /
    • 2001
  • Let $q=p^{e1}_1{\cdots}p^{em}_m$ be the product of distinct prime elements. In this short paper, we show that the largest value of M such that there exists an ($n$, M, $n-1$) $q$-ary code is $q^2$ if $n-1{\leq}p^{ei}_i$ for all $i$.

  • PDF

두 개의 다른 부분접속수 요건을 가진 부분접속 복구 부호 (Locally Repairable Codes with Two Different Locality Requirements)

  • 김건우;이정우
    • 한국통신학회논문지
    • /
    • 제41권12호
    • /
    • pp.1671-1683
    • /
    • 2016
  • 부분접속 복구 부호(Locally Repairable Code)는 분산 저장 시스템(Distributed Storage System)의 효율적인 노드 복구(repair)를 위한 부호로서, 부분접속수(locality), 즉 복구 과정에서 사용되는 노드의 개수를 작게 함으로써 복구의 효율성을 높이는 것을 목적으로 한다. 본 논문에서는 각 노드의 부분접속수가 서로 다른 값으로 규정되는 상황을 다룬다. 다중 부분접속수에 대한 기존의 연구 결과를 ($r,{\delta}$)-부분접속수의 경우로 확장하여, 서로 다른 두 부분접속수로 규정되는 부호의 최소 거리 상계 및 이를 달성하는 최적 부호의 설계를 제시한다. 제안되는 상계는 기존의 연구와 달리 다중 부분접속수의 개수가 두 개로 제한되지만, 부호의 부분접속수가 정확하게 주어지지 않고 상한으로만 주어지는 보다 일반적인 경우에 직접 적용 가능하다.

SR-ADDITIVE CODES

  • Mahmoudi, Saadoun;Samei, Karim
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1235-1255
    • /
    • 2019
  • In this paper, we introduce SR-additive codes as a generalization of the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of $S^{\alpha}{\times}R^{\beta}$. In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic ${\mathbb{Z}}_2{\mathbb{Z}}_4$, ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$, ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$ and $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$-additive codes are presented.

AN ERDŐS-KO-RADO THEOREM FOR MINIMAL COVERS

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.875-894
    • /
    • 2017
  • Let $[n]=\{1,2,{\ldots},n\}$. A set ${\mathbf{A}}=\{A_1,A_2,{\ldots},A_l\}$ is a minimal cover of [n] if ${\cup}_{1{\leq}i{\leq}l}A_i=[n]$ and $$\bigcup_{{1{\leq}i{\leq}l,}\\{i{\neq}j_0}}A_i{\neq}[n]\text{ for all }j_0{\in}[l]$$. Let ${\mathcal{C}}(n)$ denote the collection of all minimal covers of [n], and write $C_n={\mid}{\mathcal{C}}(n){\mid}$. Let ${\mathbf{A}}{\in}{\mathcal{C}}(n)$. An element $u{\in}[n]$ is critical in ${\mathbf{A}}$ if it appears exactly once in ${\mathbf{A}}$. Two minimal covers ${\mathbf{A}},{\mathbf{B}}{\in}{\mathcal{C}}(n)$ are said to be restricted t-intersecting if they share at least t sets each containing an element which is critical in both ${\mathbf{A}}$ and ${\mathbf{B}}$. A family ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is said to be restricted t-intersecting if every pair of distinct elements in ${\mathcal{A}}$ are restricted t-intersecting. In this paper, we prove that there exists a constant $n_0=n_0(t)$ depending on t, such that for all $n{\geq}n_0$, if ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is restricted t-intersecting, then ${\mid}{\mathcal{A}}{\mid}{\leq}{\mathcal{C}}_{n-t}$. Moreover, the bound is attained if and only if ${\mathcal{A}}$ is isomorphic to the family ${\mathcal{D}}_0(t)$ consisting of all minimal covers which contain the singleton parts $\{1\},{\ldots},\{t\}$. A similar result also holds for restricted r-cross intersecting families of minimal covers.