• Title/Summary/Keyword: Single-stage AC-DC

Search Result 132, Processing Time 0.023 seconds

A Single-Stage Power Factor Correction Converter far $90-265V_{rms}$ Line Applications ($90-265V_{rms}$ 입력범위를 갖는 단일전력단 역률개선 컨버터)

  • 이준영;박희정;구관본;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.508-514
    • /
    • 2000
  • A single-stage power factor correction AC/DC converter with a simple link voltage suppressing circuit (LVSC) for the universal line application is proposed. Using this simple circuit, a low link voltage can be realized without deadbands at line zero-crossings. The proposed converter is analyzed and a prototype converter with 5V, 12A output is implemented to verify the performance. The experimental results show that the link voltage stress and efficiency are about 447V and 81%, respectively.

  • PDF

Simple Technique Reducing Leakage Current for H-Bridge Converter in Transformerless Photovoltaic Generation

  • Kot, Radoslaw;Stynski, Sebastian;Stepien, Krzysztof;Zaleski, Jaroslaw;Malinowski, Mariusz
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.153-162
    • /
    • 2016
  • Given their structural arrangement, photovoltaic (PV) modules exhibit parasitic capacitance, which creates a path for high-frequency current during zero-state switching of the converter in transformerless systems. This current has to be limited to ensure safety and electromagnetic compatibility. Many solutions that can minimize or completely avoid this phenomenon, are available. However, most of these solutions are patented because they rely on specific and often complex converter topologies. This study aims to solve this problem by introducing a solution based on a classic converter topology with an appropriate modulation technique and passive filtering. A 5.5 kW single-phase residential PV system that consists of DC-DC boost stage and DC-AC H-bridge converter is considered. Control schemes for both converter stages are presented. An overview of existing modulation techniques for H-bridge converter is provided, and a modification of hybrid modulation is proposed. A system prototype is built for the experimental verification. As shown in the study, with simple filtering and proper selection of switching states, achieving low leakage current level is possible while maintaining high converter efficiency and required energy quality.

Study of the Elimination of the Electrolytic Capacitors and Reduction of the Ripple Current on the Output Node in the One-Stage PFC Flyback Converter for the LED Lighting (LED 조명용 One-Stage PFC Flyback 컨버터에서의 출력단 리플 저감과 전해 커패시터의 제거에 관한 연구)

  • Jeon, Yong-Sung;Jin, Dal-Lae;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1625-1633
    • /
    • 2012
  • In the lighting industry, a Lighting Emitting Diode (LED) is increasingly used because of many advantages and a eco-friendly product comparing with the conventional lighting. However, the LED lighting has to include various AC/DC converters because the direct current is used for the LED lighting. Among a lot of power converters, the flyback converter is widely used for the LED lighting and includes some electrolytic capacitors for the voltage regulation. But the electrolytic capacitor has shorter lifetime than the LED element. It makes the expected life-time of the converter having the electrolytic capacitor shorter than the LED element. This paper proposes the single-stage PFC flyback converter without electrolytic capacitors. To verify the performance of the proposed converter, simulated and experimental works were carried out.

Three Phase Embedded Z-Source Inverter (3상 임베디드 Z-소스 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

넓은 입력 범위를 갖는 DCM-DCM 단일 역률 보상 AC/DC 컨버터의 Voltage Doubler를 적용한 전압 및 전류 스트레스의 저감

  • Kim, Jun-Ho;Park, Gi-Beom;Jo, Dae-Yeon;Mun, Geon-U
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.349-350
    • /
    • 2010
  • 본 논문에서는 부스트 컨버터와 플라이백 컨버터가 통합된 단일(Single Stage) 역률 보상 회로의 2차측에 Voltage Doubler를 적용한 새로운 역률 보상회로를 제안한다. 제안하는 회로는 불연속 모드(DCM-DCM)로 동작하며, 스위치 전압 및 전류 스트레스를 저감하고 2차측 다이오드의 전압 스트레스를 저감시키는 특징이 있다. 120 V LED 구동 드라이버 사양의 실험을 통해 제안한 회로의 동작을 검증한다.

  • PDF

A Study on the Analysis of the Output Waveform of Three-Phase Regular Sampling PWM Inverter (3상 레귤러 샘플링 PWM 인버터의 출력파행 분석에 관한 연구)

  • 노창주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.274-285
    • /
    • 1992
  • Among various Power converters, a variable voltage variable frequency (VVVF) three-phase PWM inverter is regarded as most promising power converter due to its capabilities, which permits the control of voltage, frequency and harmonic contents in a single power stage employing only on DC source. As a modulating technique of the PWM inverter, the regular sampling technique has rendered possible the on-line computation and generation of PWM control waveforms with a reasonably high switching frequencies. In this paper, microprocessor based three-phase regular samping PWM inverter with real-time control algorithm and control circuits for driving three phase AC motor has been developed. Harmocic components of PWM waveform were analized theoretically in terms of Bessel function series and then calculated by digital computer and observed with spectrum analyzer.

  • PDF

A Novel Switching Mode for High Power Factor Correction and Low THD

  • Park, Gyumin;Eum, Hyunchul;Yang, Seunguk;Hwang, Minha;Park, Inki
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.210-212
    • /
    • 2018
  • A new switching mode has been proposed to obtain high power factor and low THD in single stage AC-DC converter. The conventional voltage mode control in critical conduction mode distorts input current shape with poor THD in flyback topology. Once TRIAC dimmer is connected, visible flicker in the LED lamp is easily detected due to a lack of TRAIC holding current near the input voltage zero cross. The newly proposed method can shape the input current by providing a desired reference voltage so that low THD is obtained by ideal sinusoidal input current in case of no dimmer connection and flat input current performs good TRIAC dimmer compatibility in phase-cut dimming condition. To confirm the validity of the proposed method, theoretical analysis and experimental result from 8W dimmable LED lighting system are presented.

  • PDF

A Current Sensor-less Bridgeless CCM Single-Stage PFC Converter with Semi-Active Rectifier (Semi-Active Rectifier를 적용한 센서리스 단일단 브리지리스 PFC 컨버터)

  • Naradhipa, Adhistira M.;Kang, Suhan;Hai, Tran;Sagpazar, Nur Banu;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.59-61
    • /
    • 2018
  • 본 논문에서는 입력전류를 센싱 받지 않아도 역률 보상을 하는 새로운 단일단 브리지리스 AC-DC컨버터를 제안한다. 제안하는 컨버터의 스위치는 전구간에서 ZVS(Zero Voltage Switching) 턴 온을 성취하며, 다이오드는 전구간에서 ZCS(Zero Current Switching) 턴 오프를 성취한다. 제안하는 컨버터의 넓은 범위의 출력전압 제어와 간단한 전력 제어를 위해 SDAB(Semi-Dual Active Bridge)기반의 모듈레이션 기법을 적용하였다. 1kW급 50kHz의 스위칭 주파수를 갖는 시작품을 통해 본 논문의 타당성을 검증하였다.

  • PDF

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.